## 1 Sep 2016

### IBPS PO/Clerk 2016 - Practice Quantitative Aptitude Questions [Answers Updated]

IBPS PO/Clerk 2016 - Practice Quantitative Aptitude Questions:
Dear Readers, Important Practice Aptitude Questions for IBPS PO and Upcoming Exams was given here with Solutions. Aspirants those who are preparing for the examination can use this.
Directions (1 – 5): Answer the questions based on the following graph assuming that there is no fixed-cost component and all the units produced are sold in the same year.

1). If the selling price per unit decreased by 25% during 2001 to 2004 and the cost per unit increases by 25% during 2005 to 2008 then the cumulative profit for the entire period 2001 to 2008 decreased by
a)   3375
b)   5325
c)   3765
d)   4875
e)   None of these

2). In which of the following years per unit cost is the maximum?
a)   2002
b)   2004
c)   2003
d)   2006
e)   2008

3). What is the average cost during the period 2001 to 2008?
a)   1625
b)   1725
c)   1475
d)   1800
e)   None of these

4). What is the average of quantities sold  during the period 2002 to 2006?
a)   117
b)   163
c)   129
d)   176
e)   141

5). If the selling price per unit decreases by 25% during 2001 to 2004 and the cost per unit increases by 25% during 2005 to 2008, then during how many years there is no profit or loss?
a)   Two
b)   Four
c)   One
d)   Five
e)   Three
Directions (Q. 6-10): In each of these questions a number series is given. In each series only one number is wrong. Find out the wrong number.

6). 17  20  46  147  599  3015  18018
a)   20
b)   46
c)   599
d)   147
e)   3015

7). 9  14  40  129  536  2705  16260
a)   14
b)   40
c)   536
d)   9
e)   129

8). 8  18  64  272  1395  8424  59045
a)   18
b)   64
c)   272
d)   1395
e)   8424

9). 90  135  286  750  2160  6405  19155
a)   90
b)   750
c)   6405
d)   286
e)   2160

10). 17  36  132  635  3500  21750  153762
a)   635
b)   17
c)   132
d)   3500
e)   36

1)e   2)d   3)a   4)e   5)c   6)c   7)b   8)b   9)d   10)a

Solution:
1). Total decrease in Revenue = 25% of (3500 + 3000 + 3000 + 4000) = 3375
Total increase in cost = 25% of (2000 + 1500 + 1500 + 500) = 1375
Decrease in cumulative profit = Total decrease in revenue + Total increase in cost = 3375 + 1375 = Rs.4750.

2). Suppose x units are produced each year
In year 2002, Total revenue = 3000 then, 15x = 3000 or x=200
Profit = 1000
Cost price = 3000 – 1000 = 2000
Cost per unit = 2000 / 200 = Rs. 10
In year 2003, 25x = 3000 or x = 120
Cost per unit = 1500 / 120 = Rs. 12.5
In year 2004, 25x = 4000 or x = 160
Cost per unit = 2000 / 160 = Rs. 12.5
In year 2006, 30x = 3000 or x = 100
Cost per unit = 1500 / 100 = Rs. 15
In year 2003, 15x = 3000 or x = 200
Cost per unit = 500 / 120 = Rs. 2.5
Therefore in 2006 cost price per unit is the maximum.

3). Cost = Revenue – Profit
Cost in 2001 = 3500 – 1500 = 2000
2002 = 3000 – 1000 = 2000
2003 = 3000 – 1500 = 1500
2004 = 4000 – 2000 = 2000
2005 = 2500 – 500 = 2000
2006 = 3000 – 1500 = 1500
2007 = 2500 – 1000 = 1500
2008 = 3000 – 2500 = 500
Average = 2000 + 2000 + 1500 + 2000 + 2000 + 1500 + 1500 + 500 / 8 = 13000 / 8 = Rs. 1625.

4). Total units in 2002 = Revenue / Selling price per unit = 3000 / 15 = 200
In 2003 = 3000 / 25 = 120
In 2004 = 4000 / 25 = 160
In 2005 = 2500 / 20 = 125
In 2006 = 3000 / 30 = 100
Average of units sold = 200 + 120 + 160 + 125 + 100 / 5 = 705 / 5 = 141.

5).
 Year Revenue Total cost = (old revenue – price) 2001 2002 2003 2004 2005 2006 2007 2008 75% of 3500 = 2625 75% of 3000 = 2250 75% of 3000 = 2250 75% of 4000 = 3000 2500 3000 2500 3000 3500 – 1500 = 2000 3000 – 1000 = 2000 3000 – 1500 = 2000 4000 – 2000 = 2000 125% of 2000 = 2500 125% of 1500 = 1875 125% of 1500 = 1875 125% of 500 = 625

In 2005, total cost = New revenue
So, there is no profit or loss.

6). The number series should be 600 in the place of 599.
The series is ×1 + 3, ×2 + 6, ×3 + 9, ×4 + 12, ×5 + 15

7). The number series should be 38 in the place of 40.
The series is ×1 + 5, ×2 + 10, ×3 + 15, ×4 + 20, ×5 + 25

8). The number series should be 63 in the place of 64.
The series is (8+1) × 2, (18+3) × 3, (63+5) × 4, (272+7) × 5

9). The number series should be 285 in the place of 286.
The series is (90-45) × 3, (135-40) × 3, (285-35) × 3, (750-30) × 3, (2160-25) × 3

10). The number series should be 636 in the place of 635.
The series is (17 + 1^3) × 2, (36 + 2^3) × 3, (132 + 3^3) × 4, (636 + 4^3) × 5