## 4 Nov 2016

### IBPS RRB/Clerk 2016 - Practice Quantitative Aptitude Questions

IBPS RRB/Clerk 2016 - Practice Quantitative Aptitude Questions Set-31:
Dear Readers, Important Practice Aptitude Questions for IBPS Clerk and Upcoming Exams was given here with Solutions. Aspirants those who are preparing for the examination can use this.

Directions (Q.Nos.1-5):  In the following questions, two equations I and II are given. You have to solve  both equations.
a)    if x > y
b)    if x ≥ y
c)    if x < y
d)    if x ≤ y
e)    if x=y  or the relationship cannot be established
1). I. x2 – 11x + 24 = 0
II.2y2-9y + 9 = 0
2).I. x3 × 12 = x2 × 247
II.y1/3 × 14 = 294 ÷ y2/3
3).I.12 × 4 / x4/7 – 3 × 4 / x4/7 = x10/7
II.y3 + 783 = 999
4).I.√500 x + √402 = 0
II.√360 y + (200)1/2
5).I.(18)2 + 144 ÷ 18 = x
II.(25)2 -18 × 21 = y

Directions (Q. 6-10): What approximate value should come in place of the question mark (?) in the following questions? (you are not expected to calculate the exact value)
6).249/15 × 299/19 ÷ 14/99 = ?
a)    1850
b)    1700
c)    1750
d)    1900
e)    2000
7).175 × 28 + 275 × 28 =?
a)    11800
b)    12600
c)    12800
d)    11600
e)    12200
8).63251 × 82 = ? × 42105
a)    101
b)    123
c)    147
d)    165
e)    189
9).(7171+3854+1195)÷(892 + 214 +543)=?
a)    13
b)    18
c)    3
d)    26
e)    7
10).1595 ÷ 25 × 36.5
a)    2459
b)    2329
c)    2359
d)    2429
e)    2349

1).b)   2).c)  3).e)  4).c)  5).b)  6).c)  7).b)  8).b)  9).e)  10).b)

Solutions:
1). I.x2 – 11x+24=0
=> x2 – 8x – 3x + 24 =0
=>x(x-8)-3(x-8) = 0
=>(x-8)(x-3) = 0
X=8 or 3
II.2y2 – 9y + 9 = 0
=>2y2 – 6y – 3y + 9 =0
=>2y(y-3)-3(y-3)=0
=>     (y-3)(2y-3)=0
Y= 3 or 3/2
Hence, x ≥y

2).I.x3 × 13 = x2 × 247
=>x3/x2 = 247/13
=> x=19
II.y1/3 × 14 =294 ÷ y2/3
=>14y1/3 = 294/y2/3
=>14y1/3 ×y2/3 = 294
=>y=294/14 = 21
Hence, x < y

3).I.12 × 4/x4/7 – 3 × 4 / x4/7 = x10/7
=>48/x4/7 -12 / x4/7 = x10/7
=>48-12/x4/7 = x10/7
=>36 = x10/7 × x4/7
=>36= x2 => x = √36 = 6
II.y3 + 783 = 999
=>Y3 =999-783
=> y3=216
y=3√216 = 6
Hence,x = y or the relationship cannot be established.

4).I.√500 x + √402 = 0
=> √500 x = -√402
=>          x = √402/500
X=-0.9
II. √360y +(200)1/2=0
=>√360y=-√200
=>y=-√200/360 =>y=-0.74
Hence, x < y

5).I.(18)2 + 144 + 18 = x
=> 324+8 = x
X=332
II.(25)2 – 18 × 21=y
625 – 378 = y
Y=247
Hence, x > y

6).
7).
8).
9).
10).