## 29 Jun 2017

### Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-16)

Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-16):
Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.

00:00:00

Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). 3 2/5 × 7 5/8 ÷ 2 1/3 × 3 1/2 × 3 1/5 = ?
121.32
122.82
123.74
124.44
125.5
? = 17/5 × 61/8 ÷ 7/3 × 7/2 × 16/5
? = 17 × 61 × 3 × 16 / (5 × 8 × 2 × 5)
? = 3111 / 25 = 124.44
2. 77.8 × 0.8 × ? = 964.72
13.5
14.5
15.5
16.5
17.5
? = 964.72 / (77.8 × 0.8) = 15.5
3. √17.64 × √14.0625 = √0.0225 × ?
105
115
125
135
145
? = 4.2 × 3.75 / 0.15 = 15.75 / 0.15
? = 105

4. 7/15 of 5/27 of 45% of 1593 = 2.1 × ?
29.5
28.5
27.5
26.5
25.5
? = 7 × 5 × 45 × 1593 / (12 × 27 × 100 × 2.1)
? = 29.5

5). (357.911)^(2/3) × (50.41)^(3/2) = (7.1)^?
5
4
3
2
1
(7.1)^? = {(7.1)^3}^(2/3) × {(7.1)2}^(3/2)
or, (7.1)^? = (7.1)^2 × (7.1)^3
or, (7.1)^? = (7.1)^5
? = 5

6. 4003 × 77 - 21015 = ? × 116
2477
2478
2467
2476
None of these
? × 116 = 4003 × 77 - 21015
? × 116 = 308231 - 21015 = 287216
? = 287216 / 116
? = 2476

7. [(5 √7 + √7) × (4 √7 + 8 √7)] - (19)^2 = ?
143
72 √7
134
70 √7
None of these
[(5 √7 + √7) × (4 √7 + 8 √7)] - (19)^2 = ?
? = [20 × 7 + 4 × 7 + 8 × 7 + 40 × 7] - 361
? = [140 + 28 + 56 + 280] - 361
? = 504 - 361 = 143

8. (4444 ÷ 40) + (645 ÷ 25) + (3991 ÷ 26) = ?
280.4
290.4
295.4
285.4
None of these
? = (4444 ÷ 40) + (645 ÷ 25) + (3991 + 26)
? = 4440 / 40 + 645 / 25 + 3991 / 26
? = 111.1 + 25.8 + 153.5 = 290.4
9. √33124 × √2601 - (83)^2 = (?)^2 + (37)^2
37
33
34
28
None of these
(?)^2 + (37)^2 = √33124 × √2601 - (83)^2
or, (?)^2 + (37)^2 = 182 × 51 - (83)^2
or, (?)^2 + 1369 = 9282 - 6889 = 2393
or, (?)^2 = 2393 - 1369 = 1024
? = √1024 = 32

10. 5 17/37 × 4 51/52 × 11 1/7 + 2 3/4 = ?
303.75
305.75
303 3/4
305 1/4
None of these
? = 5 17/37 × 4 51/52 × 11 1/7 + 2 3/4
? = 202 / 37 × 259 / 52 × 78 / 7 + 11/4
? = 202/37 × 259 / 7 × 3/2 + 11 / 4
? = 101 × 3 + 11 / 4
? = 303 + 11/4 = (1212 + 11) / 4
? = 1223/4 = 305.75

Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. 1144.98 × 5.85 × 3.2 ÷ 12 = ?
1600
1790
1800
2200
2400
? ≈ 1145 × 5.85 × 3.2 ÷ 12
? = 1786.2 ≈ 1790

12. 112.21 × 132.52 × 4.793 ÷ 17.998 = ?
3720
3780
3840
3900
3960
? ≈ 112.2 × 132.5 × 4.8 ÷ 18
? = 3964.4 ≈ 3960
13. 27.77 × 35.012 × 4.88 ÷ 24.985 + √35 = ?
180
200
220
240
260
? ≈ 27.8 × 35 × 5 / 25 + 6
? ≈ 194.6 + 6 = 200.6 ≈ 200
14. 27% of 5678 - 37% of 2345 = ?
620
635
650
665
680
? = 27 × 5678 /100 – 37 × 2345 / 100
? = 1533.06 - 867.65 = 665.41 ≈ 665
15. 648% of √429020 = ?
4050
4150
4250
4350
4450
√429020 ≈ 655
? ≈ 648 × 655 /100 = 4244.4 ≈ 4250
16. 148% of 13785 = ?
20100
20200
20300
20400
20500
? = 148 × 13785 / 100
? = 20401.8 ≈ 20400
17. √1445 + 8.01 / 6.994 × 168.08 = ?
210
220
230
240
250
√1445 ≈ 38
? ≈ 38 + 8/7 × 168
? = 38 + 192 = 230
18. √24000 × 36.06 +174.98 × 3.99 = ?
6180
6280
6380
6480
6580
√24000 ≈ 155
? ≈ 155 × 36 + 175 × 4
? = 5580 + 700 = 6280

19. 4488 ÷ √1935 + 171.991 ÷ 3.998 = ?
105
125
145
165
185
√1935 ≈ 44
? ≈ 4488 / 44 + 172 / 4
? = 102 + 43 = 145

20. (1884% of 73) ÷ 25.05 = ?
35
45
55
65
75
? = 1884 × 73 /100 ÷ 25
? ≈ 1375 / 25 = 55
Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number. 21. 4500, 5400, 5488, 4608, ?
4836
1786
2916
3866
5896
The series is,
5^3 × 62 = 4500
6^3 × 52 = 5400
7^3 × 42 = 5488
8^3 × 32 = 4608
9^3 × 22 = 2916

22. 3, 6, 17, 48, ?, 248
154
169
214
117
135
The difference between numbers is + 1^3 + 2 , + 2^3 + 3, + 3^3 +4 , + 4^3 + 5 , + 5^3 + 6

23. 13, 24, 42, 79, 153,?
198
248
288
328
378
The difference between numbers is + 1^3 + 10, + 2^3 +10, + 3^3 + 10, + 4^3 + 10, + 5^3 +10
24. 2, 4, 20, 74, ?, 452
316
202
348
184
396
The difference between numbers is +1³+1³ , +2³+2³ ,+3³+3³ , +4³+4³ , +5³+5³

25. 122, 131, 203, 446,?
1022
878
1246
1132
984
The difference between numbers is +1³+2³ , +2³+4³ ,+3³+6³ , +4³+8³

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) if x < y
b) if x ≤ y
c) if x = y
d) if x > y
e) if x ≥ y
26. I. 4x^2 – 8x + 3 = 0
II. 2y^2 – 7y + 6 = 0

a)
b)
c)
d)
e)
From equation I:
4x^2 -8x+3 = 0
or, 4x^2-6x-2x+3=0
or, 2x(2x -3)-1(2x -3) = 0
or, (2x -1)(2x -3) = 0
x =1/2 or 3/2
From equation II:
2y^2 - 7y +6 = 0
or,2y^2-4y-3y+6 = 0
or, (2y-3) (y-2)=0
y =3/2 or 2
Hence, x ≤ y

27.I. x^2 + x - 6 = 0
II. 2y^2 – 13y + 21 = 0

a)
b)
c)
d)
e)
From equation I:
x^2+ x - 6 = 0
or, x^2 – 2x + 3x – 6 = 0
or, x(x -2) +3(x - 2) = 0
(x - 2) (x + 3) = 0
x = -3 or 2
From equation II:
2y^2 – 13y + 21 = 0
or, 2y^2 – 6y – 7y + 21 = 0
or, 2y(y-3) -7(y-3) = 0
or, (2y - 7) (y - 3) = 0
y = 3 or 7/2
Hence, x
28. I. x^2 – x - 6 = 0
II. 2y^2 + 13y + 21 = 0

a)
b)
c)
d)
e)
From equation I:
x^2 – x – 6 = 0
or, x^2 – 3x + 2x – 6 = 0
or, x(x-3) + 2(x-3) = 0
or, (x-3)(x+2) = 0
x = -2 or 3
From equation II:
2y^2 +13y+21=0
or, 2y^2 +6y+7y+21 = 0
or,2y(y+3)+7(y+3)=0
or, (2y+7)(y+3) = 0
y = - 3 or - 7/2
Hence x > y
29. I. x^2 = 4
II. y^2 + 6y + 9 = 0

a)
b)
c)
d)
e)
From equation I:
x^2 = 4
x = √4
x = ± 2
from equation II:
y^2 + 6y + 9 = 0
or, y^2 + 3y + 3y + 9 = 0
or,y (y + 3)+3(y+3) = 0
or, (y+3) (y+3)=0
or, y = -3, -3
Hence x > y
30. I. 2x + 3y = 4
II. 3x + 2y = 11

a)
b)
c)
d)
e)