## 11 Jul 2017

### Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-28)

Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-28):
Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.

00:00:00

Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). 348÷29×10+126 = ? + 220
36
26
16
46
18
? = 348 ÷ 29 x 10 + 126 - 220
= 12 × 10 + 126 - 220 = 120 + 126 - 220 = 246 - 220 = 26
2. (4×4)^3 ÷ (512÷8)^4 × (32×8)^4 = (2+2)^(?+4)
12
6
Cannot be determined
8
14
(2 + 2)^(?+ 4) = (4 × 4)^3 ÷ (512 ÷ 8)^4 x (32 × 8)^4 = (4)^(2 x 3) ÷ (4)^(3 x 4) × (4)^(4 x4)
= 4^(6 - 12 + 16) = 4^10
or, (4) ^(? + 4) = 4^10
or, ? + 4 = 10
?= 10 - 4 = 6
3. [(2√392) - 21] + (√8 - 7)^2 = (?)^2
-4
12
6
4
2
[(2√392) - 21] + (√8 - 7)^2 = (?)^2
Or, (?)^2 = [2√(49×8) – 21+8+49-14√8
= 14√8 – 21 + 8 + 49 - 14√8 = 57-21 = 36
? = √(6×6) = 6

4. 2 1/4 + 5 1/6 – 4 1/8 = ? + 1 1/12
3 10/48
4 1/3
3 5/24
2 5/12
2 5/24
? = (2 + 5 – 4 – 1) + (1/4 + 1/6 – 1/8 – 1/12)
= 2 + (6 + 4 – 3 - 2) / 24 = 2 + 5/24 = 2 5/24

5). 76% of 1285 = 35% of 1256 + ?
543
547
533
537
557
? = 76% of 1285 - 35% of 1256
= [(76x1285)/100] – [(35x1256)/100]
= 976.6 - 439.6 = 537

6. {√8+[-√49 + (√225)]} = (?)^2 – 21
4
5
3
6
8
(?)2 = {√(8+[-√49 + (√225)])} + 21
= {√(8+[-√49 + 15])} + 21 = √(8 + 8) + 21
?2 = 4 + 21 = 25
? = √(5×5) = 5

7. 2/7 of 5033 + 78% of 650 = (?)^2 + 181
42
40
52
48
56
(?)^2 + 181 = (2/7) x 5033 + [(78x650) / 100] = 1438 + 507 = 1945
or, (?)^2 = 1945 - 181 = 1764
? = √1764 = 42

8. 4468 + 246.8 + 1468.28 – 6326.68 + 1248.6 = ?
1305
1105
1005
1445
905
? = 4468 + 246.8 + 1468.28 - 6326.68 + 1248.6
= 7431.68 - 6326.68 = 1105
9. (17.4)^2 + (18.2)^2 – (12.8)^2 = ?
470.16
480.6
380.16
490.26
450.16
? = (17.4)^2 + (18.2)^2 - (12.8)^2 = 302.76 + 331.24 - 163.84
= 634 - 163.84 = 470.16

10. 32% of 480 + 5/7 of 1890 – 27% of 820 = ?
1382.2
1482.2
1372.2
1282.2
1485.2
? = [(32 x 480)/100] + (5/7)×1890 – (27×820)/100
= 153.6 + 1350 - 221.4 = 1282.2

Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. (2914.01 ÷ 31.1) ÷ (1.99 ÷ 3.01) × 510.01 ÷ 169.99 = ?
405
423
340
452
567
? = (2914.01 -:-- 31.1) ÷ (1.99 ÷ 3.01) x 510.01 ÷ 169.99
? = (2914 ÷ 31) ÷ (2/3) × (510/170)
= (2914/31) × (3/2) × (510/170) = (2914x3x3) / (31 × 2)
= 47 x 9 = 423

12. (4810 / √2310) × 22.678 + 130.13 = ?
2300
2500
2700
2400
2250
? = (4810 / √2310) × 22.678 + 130.13
= (4810/48) × 22.7 + 130
= 100 × 22.7 + 130 = 2270 + 130 = 2400
13. 11.25% of 175 + 8.72% of 763 + 38% of 380 = ?
230
295
267
195
182
? = [11.25 / 100] × 175 + (8.72 / 100)×763 + (38/100)×380
= 20 + 66 + 144 = 230
14.(26.89 × 168.98 + 4317 – 6336.98) / √230 = ?
105
195
167
325
266
? = (26.89 x 168.98 + 4317- 6339.98) / √230
= (27 x 169 + 4317 – 6340) / √230
=( 4563 + 4317 – 6340) / 15
= (8880 – 6340) / 15 = 2540/15 = 167
15. √(1087.9996) + (5.1961)^2 = ? ÷ (2 / 10.7960)
44
48
30
68
11
√(1087.9996) + (5.1961)2 = ? ÷ (2 / 10.7960)
? = [√(1089) + (5)2] × (2/11)
= (33 + 25) x (2/11) = (58 × 2) / 11 = 11
16. √3598.9 x [(10008.99)^2 / 10009.001] x 0.4987 = ?
400168
200368
300270
300570
310670
? = √3598.9 x [(10008.99)2 / (10009.001)] x 0.4987
= √3600 x [(10009)2 / 10009] x 0.4987
= 60 x 10009 x 0.5 = 30 x 10009 = 300270
17. 39.05 x 14.95 - 27.99 x 10.12 = (36 + ?) × 5
25
31
125
8
45
39.05 x 14.95 - 27.99 x 10.12 = (36 + ?)5
or, 39 x 15 - 28 x 10 = 180 + 5 x (?)
or, 5 x ? = 585 - 280 - 180 = 585 - 460 = 125
? = 125/5 = 25
18. 68.25 x 170 + 28 x 16.5 -125 x 16.5 = ?
9600
9800
10000
11500
11000
? = 68.25 x 170 + 28 x 16.5 - 125 x 16.5 = 11602.5 + 462 - 2062.5
= 12064.5 - 2062.5 = 10002 = 10000

19. 487.532 +2849.029 - 675.48 = 743.095 +?
1620
1920
1820
2020
1720
? = 487.582 + 2849.029 - 675.48 - 743.095 = 488 + 2849 - 675 - 743
= 1919 = 1920

20.142% of 3915 +2874 = 12600 -?
4615
4565
4260
4090
4165
? = 12600 - (142 / 100) x 3915 - 2874
= 12600 - 5560 - 2874 = 4166 = 4165
Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.
21. 4, 6, 24, 130, 924, ?
7125
6129
5257
8334
3652
The series is based on the following pattern:
*1 + 2, *3 + 6, *5 + 10, *7 + 14, *9 + 18

22. 26, 13, 20, 51, 180, ?
812
728
731
624
835
The series is based on the following pattern:
*0.5 + 0, *1.5 + 0.5, *2.5 + 1, *3.5 + 1.5, *4.5 + 2

23. 15, 28, 87, 344, 1725, ?
10376
10324
10344
10402
10444
The series is based on the following pattern:
*2 – 2, *3 + 3, *4 – 4, *5 + 5, *6 – 6
24. 5, 6, 7.5, 9.75, ?, 18.4275
15.3525
13.1625
14.9125
14.4725
15.2225
The series is based on the following pattern:
*1.2, *1.25, *1.3, *1.35, *1.4

25. 56, 60, 51, 67, 42, ?
70
88
53
62
78
The series is based on the following pattern:
+ 2², – 3², + 4², – 5², + 6²

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) x > y
b) x < y
c) x ≥ y
d) x ≤ y
e) x = y or relation cannot be established
26). I. 12x^2 – 5x – 3 = 0,
II. 3y^2 – 11y + 6 = 0

a)
b)
c)
d)
e)
12x² – 5x – 3 = 0
12x² + 4x – 9x – 3 = 0
Gives x = -1/3, 3/4
3y² – 11y + 6 = 0
3y² – 9y – 2y + 6 = 0
Gives y = 2/3, 3
Clearly, the relation cannot be established
27). I. 6x^2 + 7x + 2 = 0,
II. 15y^2 – 38y – 40 = 0

a)
b)
c)
d)
e)
6x² + 7x + 2 = 0
6x² + 4x + 3x + 2 = 0
Gives x = -2/3, -1/2
15y² – 38y – 40 = 0
15y² + 12y – 50y – 40 = 0
Gives y = -4/5, 10/3
Clearly, the relation cannot be established
28). I. 3x^2 – 25x + 52 = 0,
II. 2y^2 – 7y + 3 = 0

a)
b)
c)
d)
e)
3x² – 25x + 52 = 0
3x² – 12x – 13x + 52 = 0
Gives x = 4, 13/3
2y² – 7y + 3 = 0
2y² – 6y – y + 3 = 0
So y = 1/2, 3
Clearly, x > y
29). I. x^2 = 1156,
II. y = √1156

a)
b)
c)
d)
e)
x² = 1156,
So x = -34, 34
y = √1156
So y = 34
Clearly, y≥x
30). I. x^2 – √3969 = √6561,
II. y^2 – √1296 = √4096

a)
b)
c)
d)
e)
x² – √3969 = √6561
x² – 63 = 81
x² = 144
So x = -12, 12
y² – √1296 = √4096
y² – 36 = 64
y² = 100
So y = -10, 10
Clearly, the relation cannot be established