## 10 Jul 2017

### Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-27)

Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-27):

00:00:00

Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). [6/4 × 32/8 × 6/16] + [6/16 × 24/8 × 36/4] = ?
93/67
99/8
94/8
99/13
None of these
? = [6/4 × 32/8 × 6/16] + [6/16 × 24/8 × 36/4]
= (9/4) + (81/8) = 99/8
2. (6160 + 12320) ÷ ? = 660
35
22
25.5
32.4
28
(6160 + 12320) ÷ ? = 660
(6160 + 12320) / 660 = 18480/660 = 28
3. ? × (1047 + 137.5) = 46195.5
27.4
26
28.4
39
28
? × (1047 + 137.5) = 46195.5
? = 46195.5 / (1047 + 137.5)
? = 46195.5 / 1184.5 = 39

4. (10 × 10 × 10) / (4 + 4 + 4 + 4) = ?
59.5
50.5
62.5
67.5
72.5
? = (10 × 10 × 10) / (4 + 4 + 4 + 4)
= 1000 / 16 = 62.5

5). (6/8) + (10/16) + (26/32) + (6/10) = ?
51/16
26/9
29/12
53/16
None of these
? = (6/8) + (10/16) + (26/32) + (6/10)
? = (3/4) + (5/8) + (13/16) + (3/5)
? = 223/80

6. 8743 + 486 ÷ 18 × 148 = ?
13729
12739
12729
13279
None of these
? = 8743 + 486 ÷ 18 x 148
= 8743 + 27 x 148 = 8743 + 3996 = 12739

7. [(135)^2 ÷ 15 × 39] ÷ ? = 60×52
15.18
16.18
17.18
19
None of these
[(135)^2 ÷ 15 x 39] ÷ ? = 60 x 52
or, [135 × (135/15) × 39] ÷ ? = 3120
or, 47385 ÷ ? = 3120
? = 47385 / 3120 = 15.18

8. 6348 + 8515 – 695 - ? = 4312 + 2162
7394
7943
7439
7440
7694
6348 + 8515 - 695 - ? = 4312 + 2162
or, 14168 - ? = 6474
or, ? = 14168 - 6474 = 7694
9. 1272 ÷ ? = 1382 – 956 – 214
6
8
16
18
21
1272 / ? = 1382 - 1170
or, 1272/? = 212
? = 1272 / 212 = 6

10. 10^37 × 10^-33 = 10^?
4
7
6
5
None of these
10^? = 10^37 × 10^(-33)
= 10^(37-33) = 10^4
? = 4

Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. 90.05 + 281 ÷ 4 – 151.06 = 3√?
27
343
216
729
243
3√? = 90.05 + 281 ÷ 4 - 151.06 90
= 90 + 280 ÷4 - 151 = 90 + 70 - 151 = 9
? = 9 x 9 x 9 = 729

12. 17.98^2 ÷ (4.05)^2 × 90.11 ÷ 4.98 = ?
396
336
242
325
365
? = (18)^2 ÷ (4)^2 × 90 ÷ 5
= (4.5)^2 × 18 = 20.25 x 18 = 364.5 = 365
13. 80.04% of 150.16 + 60.02% of 50.07 = ?
150
125
210
175
140
? = 80.04% of 150.16 + 60.02% of 50.07 = 80% of 150 + 60% of 50
= 80 x 1.5 + 60 x 0.5 = 120 + 30 = 150
14. √628 × 17.996 ÷ 15.04 = ?
30
10
5
20
15
? = √628 x 17.996 ÷ 15.04
= 625 × 18 ÷ 15 = 25 × 18 ÷15 = 30
15. (1/8) × 121 + (1/5) × 76 - ? = 25
5
45
15
10
25
(1/8) x 121 + (1/5) x 76 - ? =25
or, ? = (1/8) x 120 + (1/5) x 75 - 25 = 15 + 15 – 25 = 5
16. (28.07 × 4.97 + 15 × 6.05) / [(7.03)2 + √256.10 + 13.0001] = ?
2
-2
3
6
4
? = (28.07x4.97 + 15x6.05) /[ (7.03)2 + √256.10 +13.0001]
? = (28 x 5 + 15 x 6) / [(7)^2 + √256 + 13] =(140+90) / (49+16+13)
= 230 / 78 = 2.94 = 3
17. 849 of (11/16.13) of (441.26 / 20.98) ÷ (17.13 / 319.85) = ?
238000
201300
234500
231000
213000
? = 849 × 11/16.13 × 441.26/20.98 ÷ 17.13/319.85
= 850 × 11/16 × 441/21 × 320/17 = 50 × 11 × 21 × 20 = 231000
18. √[√(14640) + √? ] = 13
2400
2916
2305
2210
2350
13 = √[√(14640) + √? ]
Squaring both sides
or, 169 = {√[√(14640) + √? ]} ^2 = √(14640) + √?
or, 169 = √(14640) + √? = 121 + √?
or, √? = 169 – 121 = 48
? = (48)^2 = 2304 = 2305

19. 17.156 × (864.63 – 356.34) = ? – 6909.8003
15782
15802
15402
15852
15560
? = 17 x (865 – 356) + 6910
= 8653 + 6910 = 15563 = 15560

20. 4567.8 – (221 × 9.7) = 5059 - ?
2590
2409
2380
2700
2485
? = 5059 - 4567.8 + (221 x 9.7)
= 5060 - 4570 + (221 x 10) = 5060 – 4570 + 2210 = 7270 - 4570 = 2700
Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.
21. 2, 6, 16, 40, 96, ?
224
204
211
235
253
The series is based on the following pattern:
2 × 2 + 2 = 6,
6 × 2 + 4 = 16,
16 × 2 + 8 = 40,
40 × 2 + 16 = 96
96 × 2 + 32 = 224

22. 21, 10, 9, 12, 22, ?
55.5
64.5
54.5
52.5
68.5
The series is based on the following pattern:
21 × 0.5 – 0.5 = 10,
10 × 1 – 1 = 9,
9 × 1.5 – 1.5 = 12,
12 × 2 – 2 = 22,
22 × 2.5 – 2.5 = 52.5

23. 15, 29, 27, 53, 51, ?
112
101
114
120
132
The series is based on the following pattern:
15 × 2 – 1 = 29,
29 × 1 – 2 = 27,
27 × 2 – 1 = 53,
53 × 1 – 2 = 51,
51 × 2 – 1 = 101
24. 3, 3, 6, 18, 84, ?
555
405
235
696
485
The series is based on the following pattern:
3 × 0.5 + 1.5 = 3,
3 × 1 + 3 = 6,
6 × 2 + 6 = 18,
18 × 4 + 12 = 84,
84 × 8 + 24 = 696

25. 22, 12, 8, 21, 26, ?
95
90
40
58
63
The series is based on the following pattern:
22 * 0.5 + 1^2 = 12
12 * 1 – 2^2 = 8
8 * 1.5 + 3^2 = 21
21 * 2 – 4^2 = 26
26 * 2.5 + 5
2 = 90

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) x > y
b) x < y
c) x ≥ y
d) x ≤ y
e) x = y or relation cannot be established
26). I. 3x^2 – 23x + 40 = 0
II. 3y^2 – 8y + 4 = 0

a)
b)
c)
d)
e)
3x^2 – 23x + 40 = 0
3x^2 – 15x – 8x + 40 = 0
Gives x = 5, 8/3
3y^2 – 8y + 4 = 0
3y^2 – 6y – 2y + 4 = 0
Gives y = 2/3, 2
Clearly, x > y
27). I. 5x^2 – 17x + 6 = 0
II. 4y^2 – 16y + 7 = 0

a)
b)
c)
d)
e)
5x^2 – 17x + 6 = 0
5x^2 – 15x – 2x + 6 = 0
Gives x = 2/5, 3
4y^2 – 16y + 7 = 0
4y^2 – 2y – 14y + 7 = 0
Gives y = 1/2, 7/2
Clearly, the relation cannot be established
28). I. 3x^2 – 14x + 8 = 0
II. 3y^2 – 20y + 12 = 0

a)
b)
c)
d)
e)
3x^2 – 14x + 8 = 0
3x^2 – 12x – 2x + 8 = 0
Gives x = 4, 2/3
3y^2 – 20y + 12 = 0
3y^2 – 18y – 2y + 12 = 0
Gives y = 2/3, 6
Clearly, the relation cannot be established
29). I. 12x^2 + 25x + 12 = 0
II. 3y^2 + 22y + 24 = 0

a)
b)
c)
d)
e)
12x^2 + 25x + 12 = 0
12x^2 + 16x + 9x + 12 = 0
Gives x = -4/3, -3/4
3y^2 + 22y + 24 = 0
3y^2 + 18y + 4y + 24 = 0
Gives y = -4/3, -6
Clearly, x ≥ y
30). I. 6x^2 + x – 2 = 0
II. 3y^2 – 22y + 40 = 0

a)
b)
c)
d)
e)
6x^2 + x – 2 = 0
6x^2 + 4x – 3x – 2 = 0
Gives x = 1/2, -2/3
3y^2 – 22y + 40 = 0
3y^2 – 12y – 10y + 40 = 0
Gives y = 10/3, 4
Clearly, x < y

Do you feel that you are weak in English Section?
Here we are creating a pathway to win the English Section in upcoming IBPS Exams 2017
 English Learning Session :– (Day-1) English Learning Session :– (Day-2) English Learning Session :– (Day-3) English Learning Session :– (Day-4) English Learning Session :– (Day-5) English Learning Session :– (Day-6) English Learning Session :– (Day-7)