# Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-1)

Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-1):
Dear Readers, Nowadays most of the aspirants were facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily.“Practice does not make perfect, Only Perfect Practice makes perfect”.

Here in Scoring Part we are providing 10 Questions in simplification, 10 Questions in Approximation, 5 Questions in number Series and 5 Questions in Quadratic Equations, total 30 questions in 20 Minutes. By practicing these questions regularly you can increase you calculation speed and it will help you to increase you score.

00:00:00

Direction (1-10): What will come in place of question mark (?) in the following questions:
1. 637.28 – 781.47 + 257.39 = ?

113.20
104.30
122.40
133.50
None of these

1).637.28 – 781.47 + 257.39 = 113.20

2. 6% of 350 + 2% of 700 = ?% of 1400

2
2.5
3
4
None of these
2). 6/100 × 350 + 2/100 × 700 = x/100 × 1400
14x = 21 + 14
14x = 35
X = 35/14 = 2.5

3. 4672 ÷ 40 ÷ 4 = ?.

467.2
29.6
29.2
368.8
None of these
3). 4672 ÷ 40 ÷ 4 = x
4672 / (40 × 4) = x
x = 29.2

4. 7 × ? = 546 ÷ 4

24.4
113.5
37.9
19.5
None of these
4). 7 × X = 546 ÷ 4
X = 546 / 28
X = 19.5

5. 672 ÷ 24 × 18 + 153 – 354 = ?

311
322
312
308
None of these
5). 672 ÷ 24 × 18 + 153 – 354 = X
X = 504 + 153 – 354
X = 303

6. 67.39 – 11.78 + 19.63 = ? + 22.41

52.73
52.83
65.78
64.78
None of these
6). (67.39 + 19.63) – (11.78 + 22.41) = ?
? = 87.02 – 34.19
? = 52.83

7. 44% of 125 + 75% of 840 = ?

600
666
685
765
None of these
7). 44/100 × 125 + 75/100 × 840 = ?
? = 44 × 5/4 + ¾ × 840
? = 55 + 630
? = 685

8. 8.5 × 6.4 + 4.5 × 11.6 = ? ÷ 4

420.4
106.6
416
426.4
None of these
8). 8.5 × 6.4 + 4.5 × 11.6 = ? ÷ 4
? = (54.4 + 52.2) × 4
? = 106.6 × 4
? = 426.4

9. √7921 + √3969 = ? .

150
89
152
142
None of these
9). √7921 + √3969 = ?
89 + 63 = ?
? = 152

10. 39.977 + 444.333 – 44444.43 + 44.33 – 39.77 = ?

4395
-42955.56
23955
-43955.56
None of these
10). 39.977 + 444.333 – 44444.43 + 44.33 – 39.77 = ?
? = - 43955.56

11. 1002 ÷ 49 × 99 – 1299 = ?

700
600
900
250
400
11). Values can be rounded off to the nearest ten’s places.
1002 = 1000; 49 = 50; 99 = 100 and 1299 = 1300
Now the equation will become
1000 ÷ 50 × 100 – 1300 = ?
20 × 100 – 1300 = ?
2000 – 1300 = ?
? = 700

12. 29.8% of 260 + 60.01% of 510 – 103.57 = ?.

450
320
210
280
350
12). The difference between two nearest values is 70 (210 and 280). So round off the numbers to the nearest integers.
29.8% of 260 = 30% of 260; 60.01% of 510 = 60% of 510 and 103.57 = 104
Now the equation will become
30% of 260 + 60% of 510 – 104 = ?
30/100×260 + 60/100×510 -104=?
78+306-104=?
? = 384 – 104 = 280

13. 16.001 × 30.999 × 8.998 = ?

4450
4800
4100
3900
None of these
13). ? ≈ 16 × 31 × 9 ≈ 4464

14. (6.99)2 +(8.01)2 − √85 = ?

95
115
110
104
None of these
14). ? ≈ 7^2 + 8^2 − √81
≈ 49 + 64 - 9 ≈ 104

15. 49% of 5051 – (3/7) of 999 = ?.

2145
2045
1945
1905
2165
15). [(49 × 5051) / 100] – (3/7) × 999 = 2475 – 430 = 2045.

16. 4329 / 19 + 6464 / 13 = ?

725
625
925
525
825

16).(4329 / 19) + (6464 / 13) = 228 + 497 = 725

17. (4.012)^3 + (29.997)^2 = ?

1025
964
745
765
805
17). (4)^3 + (30)^2 = 64 + 900 = 964

18. 6575 / 17.98 × 42.03 / 6.87 = ?.

2190
2280
2090
2150
None of these
18). 6575 / 18 × 42 / 7 = (6575 / 18) × (42 / 7) = 365 × 6 = 2190 Answer: A

19. 12.002 × 15.005 – 8.895 × 6.965 = ?

130
117
105
110
None of these
19). 12 × 15 – 9 × 7 = 180 – 63 = 117

20. 12.664 × 22.009 × 17.932 = ?

5100
5200
5148
5199
None of these
20). 13 × 22 × 18 = 5148

Direction (21 – 25): What will come in place of the question mark (?) in the following number series?
21. 0, 3, 8, 15, 24, 35, 48, ?

60
62
63
64
68
21). The series 1^2 - 1, 2^2 - 1, 3^2 - 1, etc. The next number is 8^2 - 1 = 63 Answer: C

22. 2, 12, 36, 80, 150, ?

250
252
276
300
315
22). The series is 1^3 + 1^2, 2^3 + 2^2, 3^3 + 3^2 etc.

23. 1, 6, 13, 22, 33, ?

44
45
46
47
48
23). The pattern is + 5, + 7, + 9, + 11,...
.'. Missing number = 33 + 13 = 46.

24. 19, 2, 38, 3, 114, 4, ? .

228
256
352
456
488
24). The sequence is a combination of two series :
I. 19, 38, 114, (....) and II. 2, 3, 4
The pattern followed in I is * 2, * 3,...
.'. Missing number = 114 * 4 = 456.

25. 95, 115.5, 138, ?, 189.

154.5
162.5
164.5
166.5
173.5
25). The pattern is + 20.5, + 22.5,....
.'. Missing term = 138 + 24.5 = 162.5.

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) If x< y
b) If x ≤ y
c) If x = y, or no relation can be established between x and y.
d) If x> y
e) If x ≥ y

26. I. 9x^2 = 1
II.4y^2 + 11y – 3 =0

If x< y
If x ≤ y
If x = y, or no relation can be established between x and y
If x> y
If x ≥ y
26). I. 9x^2 = 1
:. x2 = 1/9
:. x = ± 1/3
II.4y^2 +11y – 3 =0
Or, 4y^2 + 12y – y – 3= 0
Or, 4y(y + 3) – 1 (y + 3) = 0
:.y = 1/ 4, - 3
Hence, there is no relation between x and y.

27. I.3x^2 + 5x – 2 =0
II.2y^2 – 7y + 5 =0.

If x< y
If x ≤ y
If x = y, or no relation can be established between x and y
If x> y
If x ≥ y
27). I. 3x^2 + 5x – 2 =0
Or, 3x^2 + 6x – x -2= 0
Or, 3x(x + 2) – 1(x + 2) =0
Or, (3x -1) (x +2) = 0
:. X = -2, 1/3
II. 2y^2 – 7y + 5 =0
2y^2 – 2y – 5y + 5 = 0
Or, 2y(y - 1) – 5 (y - 1) =0
:. y = 1, 5/2
Hence, x< y

28. I. 6x^2 + 13x + 5 =0
II.3y^2 + 11y + 10 =0

If x< y
If x ≤ y
If x = y, or no relation can be established between x and y
If x> y
If x ≥ y
28). I. 6x^2 + 13x +5 =0
Or, 6x^2 + 3x +10x + 5=0
Or, 3x (2x +1)+ 5(2x + 1)= 0
Or, (3x + 5) (2x +1 ) = 0
:. X = - 5/3, -1/2
II.3y^2+11y+10 = 0
Or, 3y^2 + 6y + 5y+10 = 0
Or, 3y(y + 2) + 5(y + 2) = 0
Or, (3y + 5) (y + 2) = 0
:. y= - 5/3, -2
Hence, x ≥ y

29. I.7x – 4Y =29
II.5x + 3y – 50 =0

If x< y
If x ≤ y
If x = y, or no relation can be established between x and y
If x> y
If x ≥ y
29). I. 7x – 4y = 29
II. 5x + 3y = 50
(I)×3 + (II)×4
21x - 12y = 87
20x + 12y = 200
41x = 287
:. x = 7
Putting the value of x in (I), we get
y = 5
Hence, x> y

30. I. x^2 – 5 =0
II.4y^2 – 24y + 35 =0.

If x< y
If x ≤ y
If x = y, or no relation can be established between x and y
If x> y
If x ≥ y
30). I. x^2 = 5
:. x = ±√5 ≈ ± 2 .236
II.4y^2 – 24y + 35 =0
Or, 4y^2 – 14y – 10y + 35 = 0
Or, 2y (2y - 7) – 5(2y - 7)= 0
Or,(2y - 5) (2y - 7) = 0
:. y = 5/2, 7/2 = 2.5, 3.5
Hence, x< y