# Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-20)

Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-20):

Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.

00:00:00

Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). (12.96 + 17.28 + (2.4)2) / (0.49 + 0.42 + (0.3)2) = ?

5.2
5.6
6.0
6.2
6.4

(a + b)2 = a^2 + 2ab + b^2
Now, (3.6 + 2.4)^2 / (0.7 + 0.3)^2 = ?^2
or, ?^2 = 36/1 = 36
? = √36 = 6

2. (1.2)^1.7 × (1.44)^0.7 ÷ (1.44)^(-1.45) ÷ (1.728)^2 = ?

1.2
1.44
1.728
2.0736
None of these
? = (1.2)^(1.7) × {(1.2)^2}^(0.7) ÷ {(1.2)^2}^(-1.45) ÷ {(1.2)^3}^2
= 1.2^(1.7) × 1.2^(1.4) ÷ 1.2^(-2.9) ÷ 1.2^6
= (1.2)^(1.7 + 1.4 - (-2.9) – 6) = (1.2)^(6-6)
? = (1.2)^0 = 1

3. (10019)^2 = ?

100380361
100023249
100372281
100192190
None of these
? = (10019)^2 = (10000 + 19)^2
= 100000000 + 380000 + 361 = 100380361

4. 3/7 of 11/5 of 5 /13 of 20475 = 275 ×?

24
27
35
30
36
? = 3 × 11 × 5 × 20475 / (7 × 5 × 13 × 275) = 27

5).340% of 745 = 2000 + ?% of 1/10

53.30
5330
53300
533000
None of these
340 × 745/100 – 2000 = ? / 100 × 1 / 10
or, ? = 533 × 1000 = 533000

6. (14)^0.2 × (196)^1.3 × (2744)^1.4 ÷ 38416 = (14)^?

5
4
3
2
1
(14)^? = (14)^0.2 × (14^2)^1.3 × (14^3)^1.4 ÷ (14)^4
or, (14)^? = 14^0.2 × 14^2.6 × 14^4.2 ÷ (14)^4
(14)^? = 14^((0.2 + 2.6 + 4.2) – 4)
(14)^? = 14^(7 – 4) = (14)^3
? = 3

7. 35 × 85 = 83300 ÷ ?

25
26
27
28
30
? = 83300 / (35 × 85) = 28

8. √((10648)^(1/3) - (7776)^(1/5)) = ^6√?

46656
4096
16384
1296
1024
√((10648)^(1/3) - (7776)^(1/5)) = 6√?
or, √((22^3)^(1/3) - (6^5)^(1/5)) = 6√?
6√? = √(22 – 6) = √16 = 4
? = (4)^6 = 4096

9. 1224 / ? = ? / 306

524
612
728
772
848
(?)^2 = 1224 × 306 = (18 × 17 × 4) × (18 × 17)
(?)^2 = (18 × 17 × 2)^2
? = 18 × 17 × 2 = 612

10. (8/15 + 4/25) × ? = 780

1125
1250
1280
1375
1420
8/15 + 4 / 25 = (40 + 12)/75 = 52 / 75
Now, ? = 780 × 75 / 52 = 1125

Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. 131.01% of 457.87 + 341.005% of 129.95 = 259.99% of ?

412
402
509
392
None of these
260 × ? /100 ≈ 131 × 458 /100 + 341 × 130 /100
or, 260 × ?/100 = 599.98 + 443.3 = 1043.28
or, 260 × ? = 104328
? = 104328 / 260 = 401.26 ≈ 402

12. ³√5830 + √10600 = 4√(?)^2

14641
15740
13998
13540
None of these
4√(?)^2 = ³√5830 + √10600 ≈ √5832 + √10609
4√(?)^2 = ³√(18 × 18 × 18) + √(103 × 103)
4√(?)^2 = 18 + 103 = 121
or, (?)^(2/4) = 121
or, (?)^(1/2) = 121
? = 121 × 121 = 14641

13.√(144.98% of 2163.05) = 23 1/3% of ?

260
240
250
252
None of these
23 1/3% of ?= √(144.98%of 2163.05)
70 × ? / (3 × 100) ≈ √(145 × 2163 / 100)
or, 70 × ? / (300) = √(1.45 × 2163) = √3136.35 ≈ 56
? = 56 × 300 / 70 = 240

14. 26096 / 9790 ÷ 7410 / 1640 × 4656 / 392.05 = √?

49
64
81
36
None of these
√? ≈ 26100/9800 × 1640/7400 × 4660 /390
√? = 26/98 × 16.40/74 × 4660/390
= 1987024 / 2828280 ≈ 7.03
? = 7 × 7 = 49

15. 46.79% of 438.987 + 445.88% of 370.198 = ?

2550
1560
1860
1925
None of these
? = 47% of 440 + 446% of 370
? = 0.47 × 440 + 4.46 × 370
= 206.8 + 1650.2 = 1857 ≈ 1860

16. 29.099 × 8.807 × 17.901 = ?

4588
4688
4605
24412
4433

29.099 ≈ 29.10 and 8.807 ≈ 8.80 and 17.901 ≈ 18
So, ? = 29.10 × 8.80 × 18 = 256.08 × 18
? = 4609.44 ≈ 4605

17.4 7/8 × 7 4/5 × 3 4/5 = ?

118
33192
144
180
130
? = 4 7/8 × 7 4/5 × 3 4/5 = 39/8 × 39/5 × 19/5
? = 1521 × 19 / 200
? = 28899 = 144.495 ≈ 144

18.(50243408)^(1/3) - (48627124)^(1/3) = ? - (7529535)^(1/3)

190
200
118
178
214
(50243408)^(1/3) ≈ (50243409)^(1/3) = 369
and, (48627124)^(1/3) ≈ (48627125)^(1/3) = 365
Again, (7529535)^(1/3) ≈ (7529536)^(1/3) =196
So, ? = 369 - 365 + 196
? = 200

19.14.7% of 841 +23.7% of 631 = ? + 14.039% of 781

184
175
160
199
214
14.7 × 8.41 + 23.7 × 6.31 = ? + 14.039 × 7.81
14.7 × 8.4 + 23.7 × 6.3 ≈ ? + 14 × 7.8
or 123.48 + 149.31 = ? + 109.2
123 + 149 ≈ ? + 109
or, ? = 272 - 109 = 163 ≈ 160

20. (862.415)^2 - (798.315)^2 = (37.375)^2 - (191.499)^2 + ?

141750
141730
151832
435614
178265
? = (862.415)^2 - (798.315)^2 - (37.375)^2 + (191.499)^2
≈ 743760 - 637307 - 1397 + 36672
= 141728 ≈ 141730

Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.21. 19, 42, 88, 180, 364, ?, 1468

1046
732
472
630
595
The series is +23, +46, +92, +184, +368, +736, …

22. 51, 57, 102 , 324 , ?, 6390, 38304

1590
1296
1680
1250
1272
The series is ×1 +6, ×2 -12, ×3 +18, ×4 -24, ×5 + 30, ×6 -36, ….
51 × 1 + 6 = 57,
57×2-12 = 102,
102×3+18 = 324,
324×4-24 = 1272,
1272×5+30 = 6390,
6390×6-36 = 38304, …..

23. 1953.125, 781.25, 312.5, 125, ?, 20

50
25
45
75
30
The series is ÷2.5, ÷2.5 (repeated)

24. 4 , 11, 32, 74 , 144, ? , 396

289
236
205
249
196
The series is +7 ×1, +7 ×3, +7 ×6, +7 ×10, +7 ×15, +7 ×21,
ie 4+7×1 = 11, 11+7×3 = 32
32+7×6 = 74, 74+7×10 =144,
144+7×15 = 249, 249+7× 21= 396, ….

25. 8, 28, 116, 544, ?, 13300

3589
5482
2672
7864
9378
The series is
8×5 – 12 = 28,
28 × 5 -24 = 116,
116 × 5 - 36 = 544,
544 × 5 - 48 = 2672,
2672 × 5 – 60 = 13300

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) x< y
b) x ≥ y
c) x> y
d) x ≤ y
e) Relationship between x and y cannot be established

26. I. 6x^2 + 5x + 1 = 0
II. 15y2 + 8y + 1 =0

a)
b)
c)
d)
e)

Step II: +(2/6) , +(3/6)
Step III: x = -(1/3), -(1/2)

Step II. +(5/15) , +(3/15)
Step III. y = -(1/3), -(1/5)
Hence x ≤ y

27.I. x^2 + 5x + 6 = 0
II. 4y^2 + 24y + 35 = 0

a)
b)
c)
d)
e)
Step II. +(3/1) , +(2/1)
Step III. x = -3, -2
Step II. +(14/4) , +(10/4)
Step III. y = -(7/2), -(5/2)
Hence no relation can be established.

28. I. 2x^2 + 5x + 3 =0
II. y^2 + 9y + 14=0

a)
b)
c)
d)
e)
Step II. +(3/2) , +(2/2)
Step III. x = -(3/2), -1
Step II. +(7/1) , +(2/1)
Step III. y = -7, -2
Hence x> y

29. I. 88x^2 -19x + 1= 0
II. 132y^2 - 23y + 1= 0

a)
b)
c)
d)
e)
Step II. -(11/8) , -(8/88)
Step III. x = (1/8), (1/11)
Step II. -(12/132) , -(11/132)
Step III. y = (1/11), (1/12)
Hence x ≥ y

30. I. 6x^2 - 7x + 2 = 0
II. 20y^2 - 31y + 12 = 0

a)
b)
c)
d)
e)