Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-28)

    Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-1)
    Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-28):

    Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.

     


     

    00:00:00


    Direction (1-10): What value should come in place of question mark (?) in the following questions?
    1). 348÷29×10+126 = ? + 220

    36
    26
    16
    46
    18

    1). Answer: b)
    ? = 348 ÷ 29 x 10 + 126 - 220
    = 12 × 10 + 126 - 220 = 120 + 126 - 220 = 246 - 220 = 26

    2. (4×4)^3 ÷ (512÷8)^4 × (32×8)^4 = (2+2)^(?+4)

    12
    6
    Cannot be determined
    8
    14
    2). Answer: b)
    (2 + 2)^(?+ 4) = (4 × 4)^3 ÷ (512 ÷ 8)^4 x (32 × 8)^4 = (4)^(2 x 3) ÷ (4)^(3 x 4) × (4)^(4 x4)
    = 4^(6 - 12 + 16) = 4^10
    or, (4) ^(? + 4) = 4^10
    or, ? + 4 = 10
    ?= 10 - 4 = 6

    3. [(2√392) - 21] + (√8 - 7)^2 = (?)^2

    -4
    12
    6
    4
    2
    3). Answer: c)
    [(2√392) - 21] + (√8 - 7)^2 = (?)^2
    Or, (?)^2 = [2√(49×8) – 21+8+49-14√8
    = 14√8 – 21 + 8 + 49 - 14√8 = 57-21 = 36
    ? = √(6×6) = 6


    4. 2 1/4 + 5 1/6 – 4 1/8 = ? + 1 1/12

    3 10/48
    4 1/3
    3 5/24
    2 5/12
    2 5/24
    4). Answer: e)
    ? = (2 + 5 – 4 – 1) + (1/4 + 1/6 – 1/8 – 1/12)
    = 2 + (6 + 4 – 3 - 2) / 24 = 2 + 5/24 = 2 5/24


    5). 76% of 1285 = 35% of 1256 + ?

    543
    547
    533
    537
    557
    5). Answer: d)
    ? = 76% of 1285 - 35% of 1256
    = [(76x1285)/100] – [(35x1256)/100]
    = 976.6 - 439.6 = 537


    6. {√8+[-√49 + (√225)]} = (?)^2 – 21

    4
    5
    3
    6
    8
    6). Answer: b)
    (?)2 = {√(8+[-√49 + (√225)])} + 21
    = {√(8+[-√49 + 15])} + 21 = √(8 + 8) + 21
    ?2 = 4 + 21 = 25
    ? = √(5×5) = 5


    7. 2/7 of 5033 + 78% of 650 = (?)^2 + 181

    42
    40
    52
    48
    56
    7). Answer: a)
    (?)^2 + 181 = (2/7) x 5033 + [(78x650) / 100] = 1438 + 507 = 1945
    or, (?)^2 = 1945 - 181 = 1764
    ? = √1764 = 42


    8. 4468 + 246.8 + 1468.28 – 6326.68 + 1248.6 = ?

    1305
    1105
    1005
    1445
    905
    8). Answer: b)
    ? = 4468 + 246.8 + 1468.28 - 6326.68 + 1248.6
    = 7431.68 - 6326.68 = 1105

    9. (17.4)^2 + (18.2)^2 – (12.8)^2 = ?

    470.16
    480.6
    380.16
    490.26
    450.16
    9). Answer: a)
    ? = (17.4)^2 + (18.2)^2 - (12.8)^2 = 302.76 + 331.24 - 163.84
    = 634 - 163.84 = 470.16

    10. 32% of 480 + 5/7 of 1890 – 27% of 820 = ?

    1382.2
    1482.2
    1372.2
    1282.2
    1485.2
    10). Answer: d)
    ? = [(32 x 480)/100] + (5/7)×1890 – (27×820)/100
    = 153.6 + 1350 - 221.4 = 1282.2

    Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
    11. (2914.01 ÷ 31.1) ÷ (1.99 ÷ 3.01) × 510.01 ÷ 169.99 = ?

    405
    423
    340
    452
    567
    11). Answer: b)
    ? = (2914.01 -:-- 31.1) ÷ (1.99 ÷ 3.01) x 510.01 ÷ 169.99
    ? = (2914 ÷ 31) ÷ (2/3) × (510/170)
    = (2914/31) × (3/2) × (510/170) = (2914x3x3) / (31 × 2)
    = 47 x 9 = 423

    12. (4810 / √2310) × 22.678 + 130.13 = ?

    2300
    2500
    2700
    2400
    2250
    12). Answer: d)
    ? = (4810 / √2310) × 22.678 + 130.13
    = (4810/48) × 22.7 + 130
    = 100 × 22.7 + 130 = 2270 + 130 = 2400

    13. 11.25% of 175 + 8.72% of 763 + 38% of 380 = ?

    230
    295
    267
    195
    182
    13). Answer: a)
    ? = [11.25 / 100] × 175 + (8.72 / 100)×763 + (38/100)×380
    = 20 + 66 + 144 = 230

    14.(26.89 × 168.98 + 4317 – 6336.98) / √230 = ?

    105
    195
    167
    325
    266
    14). Answer: c)
    ? = (26.89 x 168.98 + 4317- 6339.98) / √230
    = (27 x 169 + 4317 – 6340) / √230
    =( 4563 + 4317 – 6340) / 15
    = (8880 – 6340) / 15 = 2540/15 = 167

    15. √(1087.9996) + (5.1961)^2 = ? ÷ (2 / 10.7960)

    44
    48
    30
    68
    11
    15). Answer: e)
    √(1087.9996) + (5.1961)2 = ? ÷ (2 / 10.7960)
    ? = [√(1089) + (5)2] × (2/11)
    = (33 + 25) x (2/11) = (58 × 2) / 11 = 11

    16. √3598.9 x [(10008.99)^2 / 10009.001] x 0.4987 = ?

    400168
    200368
    300270
    300570
    310670

    16). Answer: c)
    ? = √3598.9 x [(10008.99)2 / (10009.001)] x 0.4987
    = √3600 x [(10009)2 / 10009] x 0.4987
    = 60 x 10009 x 0.5 = 30 x 10009 = 300270

    17. 39.05 x 14.95 - 27.99 x 10.12 = (36 + ?) × 5

    25
    31
    125
    8
    45
    17). Answer: a)
    39.05 x 14.95 - 27.99 x 10.12 = (36 + ?)5
    or, 39 x 15 - 28 x 10 = 180 + 5 x (?)
    or, 5 x ? = 585 - 280 - 180 = 585 - 460 = 125
    ? = 125/5 = 25

    18. 68.25 x 170 + 28 x 16.5 -125 x 16.5 = ?

    9600
    9800
    10000
    11500
    11000
    18). Answer: c)
    ? = 68.25 x 170 + 28 x 16.5 - 125 x 16.5 = 11602.5 + 462 - 2062.5
    = 12064.5 - 2062.5 = 10002 = 10000


    19. 487.532 +2849.029 - 675.48 = 743.095 +?

    1620
    1920
    1820
    2020
    1720
    19).Answer: b)
    ? = 487.582 + 2849.029 - 675.48 - 743.095 = 488 + 2849 - 675 - 743
    = 1919 = 1920


    20.142% of 3915 +2874 = 12600 -?

    4615
    4565
    4260
    4090
    4165
    20). Answer: e)
    ? = 12600 - (142 / 100) x 3915 - 2874
    = 12600 - 5560 - 2874 = 4166 = 4165

    Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.
    21. 4, 6, 24, 130, 924, ?

    7125
    6129
    5257
    8334
    3652
    21). Answer: d)
    The series is based on the following pattern:
    *1 + 2, *3 + 6, *5 + 10, *7 + 14, *9 + 18


    22. 26, 13, 20, 51, 180, ?

    812
    728
    731
    624
    835
    22). Answer: a)
    The series is based on the following pattern:
    *0.5 + 0, *1.5 + 0.5, *2.5 + 1, *3.5 + 1.5, *4.5 + 2


    23. 15, 28, 87, 344, 1725, ?

    10376
    10324
    10344
    10402
    10444
    23). Answer: c)
    The series is based on the following pattern:
    *2 – 2, *3 + 3, *4 – 4, *5 + 5, *6 – 6

    24. 5, 6, 7.5, 9.75, ?, 18.4275

    15.3525
    13.1625
    14.9125
    14.4725
    15.2225
    24). Answer: b)
    The series is based on the following pattern:
    *1.2, *1.25, *1.3, *1.35, *1.4

    25. 56, 60, 51, 67, 42, ?

    70
    88
    53
    62
    78
    25). Answer: e)
    The series is based on the following pattern:
    + 2², – 3², + 4², – 5², + 6²

    Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
    a) x> y
    b) x< y
    c) x ≥ y
    d) x ≤ y
    e) x = y or relation cannot be established

    26). I. 12x^2 – 5x – 3 = 0,
    II. 3y^2 – 11y + 6 = 0

    a)
    b)
    c)
    d)
    e)
    26). Answer: e)
    12x² – 5x – 3 = 0
    12x² + 4x – 9x – 3 = 0
    Gives x = -1/3, 3/4
    3y² – 11y + 6 = 0
    3y² – 9y – 2y + 6 = 0
    Gives y = 2/3, 3
    Clearly, the relation cannot be established

    27). I. 6x^2 + 7x + 2 = 0,
    II. 15y^2 – 38y – 40 = 0

    a)
    b)
    c)
    d)
    e)
    27). Answer: e)
    6x² + 7x + 2 = 0
    6x² + 4x + 3x + 2 = 0
    Gives x = -2/3, -1/2
    15y² – 38y – 40 = 0
    15y² + 12y – 50y – 40 = 0
    Gives y = -4/5, 10/3
    Clearly, the relation cannot be established

    28). I. 3x^2 – 25x + 52 = 0,
    II. 2y^2 – 7y + 3 = 0

    a)
    b)
    c)
    d)
    e)
    28). Answer: a)
    3x² – 25x + 52 = 0
    3x² – 12x – 13x + 52 = 0
    Gives x = 4, 13/3
    2y² – 7y + 3 = 0
    2y² – 6y – y + 3 = 0
    So y = 1/2, 3
    Clearly, x> y

    29). I. x^2 = 1156,
    II. y = √1156

    a)
    b)
    c)
    d)
    e)
    29). Answer: d)
    x² = 1156,
    So x = -34, 34
    y = √1156
    So y = 34
    Clearly, y≥x

    30). I. x^2 – √3969 = √6561,
    II. y^2 – √1296 = √4096

    a)
    b)
    c)
    d)
    e)
    30). Answer: e)
    x² – √3969 = √6561
    x² – 63 = 81
    x² = 144
    So x = -12, 12
    y² – √1296 = √4096
    y² – 36 = 64
    y² = 100
    So y = -10, 10
    Clearly, the relation cannot be established