# Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-2)

Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-2):
Dear Readers, Nowadays most of the aspirants were facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.

Here in Scoring Part we are providing 10 Questions in simplification, 10 Questions in Approximation, 5 Questions in number Series and 5 Questions in Quadratic Equations, total 30 questions in 20 Minutes. By practicing these questions regularly you can increase you calculation speed and it will help you to increase you score.

00:00:00

Direction (1-10): What value should come in place of question mark (?) in the following questions?
1.(12)^(3/2) × (12)^(5/2) × (144)^(3/2) ÷ (12)^? = 1728

7/2
5/2
6
5
4

1).(4×3)^(3/2 ) × (4×3)^(5/2 ) × (4×3×4×3)^3/2 / (12)^? = 1728
Or, 4^[(3/2+5/2)] × 3^[(3/2+5/2)] × 4^3 × 3^3 / 1728 = 12^?
Or, 4^4 × 3^4 × 4^3 × 3^3 / 1728 =12^?
Or, (64×27) × 4 × 3 × 4^3 × 3^3 / 1728=12^?
Or, 4^4×3^4=12^?
Or, (12)^4=12^?
?=4

2. 22% of 44% of 66% of 275000=?

14968.2
16669.2
17869.2
17569.2
15869.2
2). ?=(275000 × 22 × 44 × 66) / (100 × 100 × 100)
= (275 × 22 × 44 × 66)/(10 × 100)
? = 17569.2

3. 5.2% of 3900-4.8% of 3400=?.

39.6
45.4
35.2
42.4
36.6
3). ? = (5.2% of 3900) - (4.8% of 3400)
= [(5.2 × 3900) / 100] – [(4.8 × 3400)/100]
= (5.2×39) - (4.8×34)
= 202.8-163.2
? = 39.6

4. (24389÷2.9)×7.5=?

76075
64075
63075
66075
66275
4). ? = (24389/2.9) × 7.5
= (24389/29 ×10) × 7.5
= 841 × 10 × 7.5
? = 63075

5. 16% of 80+?% of 44=34.8

55
50
60
40
70
5). (16 × 80)/100 + (? × 44)/100 = 34.8
Or, ? × 44/100 = 34.8 -12.8 = 22
Or, ? = (22×100)/44 = 50

6. 73% of 180+23% of 640.5=?

278.517
288.715
278.715
268.715
287.715
6). ? = (73 × 180)/100 + (23 × 640.5)/100
= 131.4+147.315 = 278.715

7. 139.99-148.39+25.66+31.396=?

48.686
48.656
49.456
47.656
46.456
7). ? = (139.99 + 31.396 + 25.66) - 148.39
= 197.046 - 148.39
? = 48.656

8. (19% of 361)÷1.9=?

391
361
36.1
39.1
3.61
8).? = (19 × 361×10)/(100×19)
= (19×19)/10 = 36.1

9. 58% of ?=6728.

79695
79425
11600
24225
None of these
9).? = (6728/58) × 100 = 11600

10. (∛12167) × (∛274625) × (∛250047)=?.

98956
78695
87695
94185
94565
10). ?= (∛12167) × (∛274625) × ( ∛250047)
= 23 × 65 × 63 = 94185

Direction (11-20): What approximate value should come in place of question mark (?)in the following questions?
11. 816.21÷34.97×24.98 =?

650
620
480
580
550
11). ? = (816/35) × 25
= 23 × 25
= 575 ≈ 580

12. √(1680) + 3√(4095) =?

78
69
50
59
57
12). ? = √1680 + 3√4095
≈ 41+16 = 57

13. 22 × (1/3)% of 435.3-(11/7)% of 1734.67 =?

78
69
50
59
62
13). ? = (67/3) × (435/100) – (11/7) × (1735/100)
≈ (97-27) = 70 ≈ 69

14. (803.71)^2 =?

566000
767600
646400
787800
506000
14). ≈ (804)2=646416 ≈ 646400

15. (4721+3271+5324)÷(491+769+132)=?.

40
20
25
10
15
15). ? = (4721 + 3271 + 5324) ÷ (491 + 769 + 132)
=13316 ÷ 1392 ≈ 13400 ÷1400
= 9.5 ≈ 10

16. 899.99÷45.012 = ? - 224.448

355
295
395
245
185
16). 899.99 ÷ 45.012 = ? - 224.488
Or, ? = 900 ÷ 45 + 224
= 20 + 224 = 244 = 245 (approx.)

17. 3/5 of 7/19 if 15/28 of 543= ?.

50
72
44
88
64
17). ? = (3/5) × (7/19) × (15/28) × 543
= (63 × 543)/(19 × 28) = 64.30 = 64 (approx)

18. 423.62-269.21÷(11.9% of 78)=?.

275
645
455
395
525
18). ? = 423.62 - 269.21 ÷ (11.9% of 78)
424 – 270 ÷ (78 × 12)/100
= 424 – 270 ÷ 9
= 424 – 30 = 394 ≈ 395 (approx)

19. 17.99^2-14.05^2 + (2343.75+81.55)÷?=229

12
28
24
39
32
19). (17.99)^2 - (14.05)^2 + (2343.75 + 81.55) ÷ ? = 229
Or, (18)2 - (14)^2 + (2344 + 82) ÷ ? = 229
Or, 324 -196 + 2426 ÷ ? = 229
Or, 2426/? = 229 – 128 = 101
Or, ? = 2426/101 = 24 (approx)

20. 12.95×7.05+(85.01)^2×10.99=?.

76876
78356
79566
77776
77586
20). ? =12.95 ×7.05 + (85.01)2 × 10.99
≈13 × 7 + (85)^2 × 11
= 91 + 7225 × 11 (12.95 is approx. taken as 13)
= 91 + 79475 = 79566

Direction (21 – 25): What value should come in place of the question mark (?) in the following number series?
21. 122, 62, 32, ?, 9.5, 5.75

19
24
17
20.25
Other than the given options
21). The series following the pattern of ÷ 2 + 1.
122 ÷ 2 + 1 = 62,
62 ÷ 2 + 1 = 32,
32 ÷ 2 + 1 = 17, etc

22. 1, 1, 2, 8, 64, ?, 32768

1024
2556
4096
1088
None of these
22). The sequence in the series is × 1, × 2, × 4, × 8, × 16, × 32.

23.67, 81, 87, 162, 504, 1992, 9990, ?.

59903
59906
56895
59904
59861
23). The difference between numbers is x 1 + 6 , x 2 - 12, x 3 + 18 ,x 4 - 24 ,x 5 + 30 , x 6 - 36, …

24. 49, 72, 118, ?, 394, 762, 1498.

234
239
210
219
243
24). The difference between numbers is +23 , +46 , +92 , +184 , +368 ,+736

25. 40,326, ? ,29418, 323607

2326
2941
3946
2596
3561
25). The series is,
40 x 8 + 6 = 326
326 x 9 + 7 = 2941
2941 x 10 + 8 = 29418
29418 x 11 + 9 = 323607

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
26.I. x² − 6x = 7
II. 2y² + 13y + 15 = 0.

If x< y
If x> y
If x = y, or no relation can be established between x and y
If x ≥ y
If x ≤ y
26). x² − 6x = 7
x(x-7)+(x-7)=0
→ x=7,-1
2y² + 13y + 15 = 0
2y(y+5)+3(y+5)=0
→y=-5, -3/2
i.e x> y

27. I. 3x² − 7x + 2 = 0
II. 2y² − 11x + 15 = 0.

If x< y
If x> y
If x = y, or no relation can be established between x and y
If x ≥ y
If x ≤ y
27). 3x² − 7x + 2 = 0
3x(x-2)+(x-2)=0
→x=2,-1/3
2y² − 11x + 15 = 0
2y(y-3)-5(y-3)=0
→y=3,5/2

28. I. 10X² − 7x + 1 = 0
II. 35y² − 12y + 1 = 0

If x< y
If x> y
If x = y, or no relation can be established between x and y.
If x ≥ y
If x ≤ y
28). 10X² − 7x + 1 = 0
5x (2x-1)-(2x-1)=0
→x=1/2, 1/5
35y² − 12y + 1 = 0
7y (5y-1)-(5y-1)=0
→y=1/7,1/5
i.e x ≥ y

29. I. 4x² = 25
II. 2y² − 13y + 21 = 0.

If x< y
If x> y
If x = y, or no relation can be established between x and y
If x ≥ y
If x ≤ y
29). 4x² = 25
→X=5/2, -5/2
2y² − 13y + 21 = 0
2y(y-3)-7(y-3)=0
→y=3,7/2
i.e x< y

30. I. 3x² + 7x = 6
II. 6(2y² + 1) = 17y

If x< y
If x> y
If x = y, or no relation can be established between x and y
If x ≥ y
If x ≤ y
30). 3x² + 7x = 6
3x(x+3)-2(x+3)=0
→x= 2/3,-3
10y² – 7y + 1 = 0
5y(2y-1)-(2y-1)=0
→y=1/2, 1/5
i.e relation cannot be established