# Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-3)

Crack IBPS Exam 2017 – Quantitative Aptitude Scoring Part (Day-3):
Dear Readers, Nowadays most of the aspirants were facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.

Here in Scoring Part we are providing 10 Questions in simplification, 10 Questions in Approximation, 5 Questions in number Series and 5 Questions in Quadratic Equations, total 30 questions in 20 Minutes. By practicing these questions regularly you can increase you calculation speed and it will help you to increase you score.

00:00:00

Direction (1-10): What value should come in place of question mark (?) in the following questions?
1. 336829 – 2568 – 182639 = ?

121622
141622
151622
151642
161522

1).? = 336829 – 185207
? =151622

2. 157 ÷ 5 ÷ 0.2 = ? – 12 × 1.4

178.8
173.8
184.48
163.48
163.8
2). ? – 12 × 1.4 = [157 / (5 × 0.2)] = 157
Or, ? = 157 + 16.8 = 173.8

3. 15 1/4 + 32 1/3 + 12 3/4 × 7 1/17 = ? + 13 1/4

123 1/3
124 3/4
122 1/4
124 1/3
124 1/12
3). ? + 13 1/4 = (61/4) + (97/3) + (51/4) × (120/17)
= (61/4) + (97/3) + 90 = (183+388+1080)/12 = 1651/12
Or, ?= (1651/12) - (53/4) = (1651-159)/12 = 1492/12
= 124 4/12 = 124 1/3

4. 3.6 ×1.5 + 4.4 × 2.5 - 1.2 × 2.8 = ?

13.04
17.46
16.04
15.40
11.04
4). ? = 3.6 × 1.5 + 4.4 × 2.5 - 1.2 × 2.8
= 5.4 + 11 - 3.36 = 16.4 - 3.36 = 13.04

5. 156% of 780 - 2/5 of 480 + 85% of 540=?

1388.5
1483.8
1488.8
1538.8
None of these
5). ? = 156 × 7.80 - (2/5) × 480 + 85 × 5.40
= 1216.8 – 192 + 459
= 1675.8 - 192 = 1483.8

6. 160 ÷ 12.5 × 4.5 + 34.2 × 3.4 = ?

1220.4
1120.4
1320.04
1220.04
1221.04
6). ? = (160/12.5) × 4.5 + 34.2 × 3.4
= 12.8 × 4.5 + 34.2 × 34
= 57.6 + 1162.8 = 1220.4

7. 14580 ÷ 54 ÷ 12 = ?

26.5
22.5
22.05
25
23.5
7). ? = (14580) / (54 × 12) = 22.5

8. 85% of 95% of 4/5 of 2240 = ?

1447.04
1457.04
1449.07
1449.05
1447.004
8).? = (85/100) × (95/100) × (4/5) × 2240
= (17 × 19 × 4 × 112) / 100
= 144704/100 = 1447.04
? = 426.4

9. (√77.44) × (∛884.736) = ?

90.96
84.48
87.24
82.48
86.94
9). (√77.44) = (√(7744/100)) = (88/10) = 8.8
(∛884.736 ) = (∛(884736 / 1000)) = (96/10) = 9.6
? = (8.8) × (9.6) = 84.48

10. (11.1) × (22.2) × (4.44) = ?

1094.1048
1001.9368
2276.7968
1736.1740
1296.3968
10). ? = 11.1 × 22.2 × 4.44 = 1094.1048

Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. 122 .05% of 120 + 149.99% of 150 = ?

371
380
354
379
347
11). 122.05% = 122% and 149.99% = 150%
Now, ? = 122% of 120 + 150% × 150
= (122 × 120/100) + (150 × 150/100) = (146.4+225)
= 371.4 ≈ 371

12. (9.899)^3 × (2.399)^2 × (4.005)^4 = ?

1428200
149320
1496281
1555555
1454649
12). Given (9.899)^3 × (2.399)^2 × (4.005)^4
= (9.9)^3 × (2.4)^2 × (4)^4
= (970.299) × (5.76) × 256
= (970.3) × (5.75) × 256 = 1428281.6 ≈ 1428200 Answer: A

13. (√(121.05 )) × (√168.99) × ( ( 3√124.9899) ) = ?

715
680
745
695
730
13). ?= (√121.05) × (√168.99)× (∛124.9899) = (√121) × (√169) × ( ∛125)
= 11 × 13 × 5 = 715

14. (49.99)^2 + (59.96)^2 + (64.501)^2 = ?

16425
12369
10260
13425
15175
14). ? = (50)^2 + (60)^2 + (64.5)^2
= 2500 + 3600 + 4160.25 = 10260

15. (65.001)^2 + (63.999)^2 - (48.998)^2 = ?

4900
5730
5920
5680
4896
15).? = (65)^2 + (64)^2 - (49)2
= 4225 + 4096 - 2401
= 8321 – 2401 = 5920

16. 68.003 ÷ 33.489 = (?)^2 -18.79

10
18
3
8
None of these

16).(?)^2 - 18.789 = 68.003 ÷ 33.489
(?)^2 – 19 = 68/34
Or, (?)^2 = 2 +19
(?)^2 = 21
?= √21
? = 4.58 ≈ 5

17. 68.003 ÷ 33.489 = (?)^2 -18

400
380
440
460
None of these
17). ? = 14 × 17 + 22 × 9 = 238 + 198 = 436 ≈ 440

18. 20440 ÷ 639.890 = √(?)

984
1024
980
1184
1050
18). √(?) = 20440 ÷ 640 = 31.99 ≈ 32
? = 32 × 32 = 1024

19. 279.04 × 12.546 + 65.37 × 47.08 = ? + 126.589

7250
6350
6550
6850
6450
19). ? +126.589 = 279.04 × 12.546 + 65.37 × 47.08
? +127 = 276 × 13 + 65 × 47
? +127 = 3627 + 3055
? +127 = 6682
? = 6682 – 127
= 6555 ≈ 6550

20. (19.97 % of 781) + ? + (30% of 87) = 252

40
50
25
70
80
20).(19.97% of 781) + ? + (30% of 87) = 252
Or (20% of 780) + ? + (30 % of 87) = 252
156 + ? + 26 ≈ 252
182 + ? ≈ 252
? ≈ 252 - 182
? = 70

Direction (21 – 25): What value should come in place of the question mark (?) in the following number series?
21. 22, 42, 64, 88, ?

112
118
116
114
115
21). The series is 3² + 13 = 22, 4² + 26 = 42,
5² + 39= 64, 6² +52 = 88
? = 7² + 65 = 114

22. 11, 61, 299, 1189, ?

3559
3659
3569
3549
3459
22). The sequence in the series is × 6 - 5, × 5 - 6, × 4 - 7, × 3 - 8,….

23. 215, 19, 163, 63, ?

117
127
125
126
109
23). The difference between numbers is – 14^2, +12^2, - 10^2, +8^2, …

24. 160, 80, 120, 300, ?

1050
1000
1040
1020
1060
24). The sequence in the series is × 1/2, × 3/2, × 5/2, × 7/2, ...

25. 4, 5, 8, 15, ?

25
26
28
31
24
25). The series is, +1^2 – 0, +2^2 – 1, +3^2 – 2, +4^2 – 3, …

Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
26. Ⅰ. 3x^2 + 13x + 14 = 0
Ⅱ. 3y^2 + 11y + 10 = 0

x< y
x> y
x = y or no relation can be established between x and y
x ≥ y
x ≤ y
26). Ⅰ. 3x2 + 13x + 14 = 0
Or, (3x + 7) (x + 2) = 0
x = -2 or – (7 / 3)
Ⅱ. 3y^2 + 11y + 10 = 0
Or, (y + 2) (3y + 5) = 0
∴ y = -2 or – (5 / 3)
Hence x ≤ y

27. Ⅰ. 49x^2 - 84x + 36 = 0
Ⅱ. 25y^2 - 30y + 9 = 0

x< y
x> y
x = y or no relation can be established between x and y
x ≥ y
x ≤ y
27). I.49x^2 - 84x + 36 = 0
Or, 49x^2 - 42x – 42x + 36 = 0
Or, (7x - 6)(7x - 6) = 0
x = 6/7, 6/7
Ⅱ. 25y^2 - 30y + 9 = 0
Or, (5y - 3)2 = 0
∴ y = 3/5, 3/5
Hence x> y

28. Ⅰ. 3x + 4y = 49
Ⅱ. 5x + 8y = 91

x< y
x> y
x = y or no relation can be established between x and y
x ≥ y
x ≤ y
28). Here, x = y = 7

29. Ⅰ. x + (1 / x) = 17 / 4
Ⅱ.4y2 + 4 + 17y = 0

x< y
x> y
x = y or no relation can be established between x and y
x ≥ y
x ≤ y
29). Ⅰ. x + (1 / x) = 17 / 4 = 4(1 / 4)
x = 4 or 1 / 4
Ⅱ.4y^2 + 4 + 17y = 0
Or, 4y^2 + 16y + y + 4 = 0
Or, (y + 4)(4y + 1) = 0
y = -4, or – (1 / 4)
Hence x> y

30.Ⅰ. x^2 - 9x + 18 = 0
Ⅱ. 2y^2 - 5y = 3

x< y
x> y
x = y or no relation can be established between x and y
x ≥ y
x ≤ y
30). I.x^2 - 9x + 18 = 0
Or, (x - 6)(x - 3) = 0
x = 6 or 3
Ⅱ. 2y^2 - 5y - 3 = 0
Or, (y – 3)(2y + 1) = 0
∴ y = - (1 / 2) or 3
Hence x ≥ y