Direction (110): What value should come in place of question mark (?) in the following questions?135% of 342  342% of 13.5 = ?
? = 461.7  46.17 = 415.53
Answer: E
2. √(13.3225) = ?
Answer: C
3. 144 × 7 + 612 × 4 = ?% of 12800
? = 3456 / 128 = 27
Answer: B
4. 1859 / ? = ? / 275
(?)^2 = 25 × 121 × 169
? = 5 × 11 × 13 = 715
Answer: A
5. 36% of 17/123 of 18/41 of 25215 = ?
? = 550.8
Answer: E
6. 13/8 of 15/32 of 0.45% of 7168 = ?
? = 24.57
Answer: B
7. (1036 × 0.75 + 1128 × 0.25) × 3.5 = ?
? = (777 + 282) × 3.5
? = 1059 × 3.5 = 3706.5
Answer: E
8. √? = (78 × 148) ÷ 481
? = (24)^2
? = 576
Answer: C
9. (5546 ÷ 47 + 4984 × 0.25) ÷ 11 = ?
? = (118 + 1246) ÷ 11
? = 1364 / 11 = 124
Answer: A
10. 6 2/5 × 5 5/8 × 11 11/14 ÷ 6 2/7 = ?
? = 135/2
? = 67.5
Answer: E
Direction (1120): What approximate value should come in place of question mark (?) in the following questions?
11. 185% of 1359 + 18.5% of 1319 = ?
? = 2516 + 244.2 = 2760.2 ≈ 2760
Answer: C
12. √(5475) ÷ 4.98 = ?
? = 74 / 5 = 14.8 ≈ 15
Answer: B
13. 118.07 × 13.49 + 169.8% of 784 = ?
≈118 × 13.5 + 170 % of 784
= 1593 + 1332.8
= 2925.8 ≈ 2930
Answer: E
14. 43.03 × 27.96 + 11.98 × ³√42870 = ?
? = 1204 + 420 = 1624 ≈ 1625
Answer: A
15.{(8.66)^2 × 13.98} ÷ √50 = ?
? = {74.99 × 13.98} ÷ 7.07
? = 75 × 14 / 7
= 148.48 ≈ 150
Answer: D
16. 339% of 803 + 77.8% of 1107 = ?
? = 2720 + 858 = 3578 ≈ 3580
Answer: C
17. √2300 × √240 = ?
? = 47.95 × 15.5 = 742.9 ≈ 745
Answer: D
18. 14.03 × 27.489  8.749 × 16.04 = ?
= 385  140 = 245 ≈ 250
Answer: B
19. 119.003 × 14.987 + 21.04 × 13.96 = ?
= 1785 + 294 = 2079 ≈ 2080
Answer: A
20. 17.38% of 1547  21.012 × 8.97 = ?
= 269.7  189 = 80.7 ≈ 80
Answer: B
Direction (21 – 25): What value should come in place of the question mark (?) in the following number series?21. 19, 27, 0, 64, ? , 155
Answer: E
22. 49, 216, 625 , 1024 , 729 , ?
Answer: A
23. 71 , ? , 868, 4345, 26076
Answer: D
24. 1, 12, 144, 1728 , ?
Answer: C
25. 8, 4.5 , 5.5 , 13 , 56 , ?
8 x 0.5 + 0.5 = 4.5,
4.5 x 1 + 1 = 5.5,
5.5 x 2 + 2 = 13,
13 x 4 + 4 = 56,
56 x 8 + 8 = 456
Answer: E
Direction (2630): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) If p = q, or no relation can be established between p and q.
b) If p> q
c) If q> p
d) If p ≥ q
e) If q ≥ p
26. I. 3p + 2q = 19
II. p + q = 8
Or, p = 8 – q ……(i)
I. 3p + 2q = 19
Or, 3(8  q) + 2q =19
Or, q = 5
:.p =8 5 = 3
Hence, q> p
Answer: C
27. I. 10q^2 + 19q + 9 =0
II. 13p^2 – 2p – 11 = 0
Or, 10q^2 + 10q + 9q + 9= 0
Or, 10q (q + 1) + 9(q + 1) =0
Or, (q + 1)(10q + 9) =0
Or, q =  9/10,  1
II. 13p^2 – 2p – 11 =0
Or, 13p^2  13p + 11p – 11 = 0
Or, 13p (p  1) + 11(p  1) = 0
Or,(13p + 11) (p  1) =0
Or, p =  11/13, 1
Hence, p> q
Answer: B
28. I. 2p^2 + 3p – 5 =0
II.2q^2 + 11q + 15 =0
Or, p = 1,  5/2
II. 2q^2 + 11q + 15 = 0
Or, 2q^2 + 6q + 5q+ 15 = 0
Or, 2q(q + 3)+ 5(q + 3) = 0
Or,(q + 3) (2q + 5) = 0
Or, q = 3,  5/2
Hence, p ≥ q.
Answer: D
29. I. 2401p^2 = p ^(– 2)
II. 7(p + q) = 2
Or, p^4 = 1/ 2401
Or, p^4 = (1 / 7)^4 or, p= 1/ 7
II. 7p + 7q = 2
Or, 7q + 1 =2
Or, 7q =1
Or, q = 1/ 7
Hence, p = q
Answer: A
30.I. p^2 3p + 2 =0
II. q^2 – 7q +10 = 0
Or, (p  2) (p 1) = 0
Or, p =1, 2
II. q^2 – 7q + 10 = 0
Or, (q  2) (q  5) =0
Or, q = 2, 5
Hence, q ≥ p.
Answer: e
English Learning Session :– (Day1)


English Learning Session :– (Day2)


English Learning Session :– (Day3)


English Learning Session :– (Day4)


English Learning Session :– (Day5)


English Learning Session :– (Day6)


English Learning Session :– (Day7)
