__SBI Clerk Mains Exam 2016- Practice Aptitude Questions (__**:**

__Quadratic Equation) Set-85__Dear Readers, Important Practice Aptitude Questions with solution for Upcoming SBI Clerk Exam, candidates those who are preparing for those exams can use this practice questions.

9x – 4x = 70

**Directions (Q. 1-10): In the following questions, two Equations I and II are given. You have to solve both the equation.**

**Give Answer**

a) If x> y

b) If x ≥ y

c) If x< y

d) If x ≤ y

e) If x = y or the relationship cannot be established

**1).**I. 5x

^{2}– 18x + 9 = 0

II. 20y

^{2}– 13y + 2 = 0

**2).**I. x

^{3}– 878 = 453

II. y

^{2}– 82 = 39

**3).**I. 3/√x + 4/√x = √x

II. y

^{3}– (7)^{7/2}/√y = 0

**4).**I. 9x – 15.45 = 54.55 + 4x

II. √(y + 155) – √36 = √49

**5).**I. x

^{2}+ 11x + 30 = 0

II. y

^{2}+ 7y + 12 = 0

**6).**I. x

^{2}– 19x + 84 = 0

II. y

^{2}– 25y + 156 = 0

**7).**I. x

^{3}– 468 = 1729

II. y

^{2}– 1733 + 1564 = 0

**8).**I. 9/√x + 19/√x = √x

II. y

^{5}– (2 × 14)^{11/2}/√y = 0

**9).**I. √(784)x + 1234 = 1486

II. √(1089)y + 2081 = 2345

**10).**I. 12/√x – 23/√x = 5√x

II. √y/12 – 5√y/12 = 1/√y

**Answers:**

**1).a) 2).b) 3).e) 4).e) 5).c) 6).d) 7).b) 8).e) 9).a) 10).a)**

__Solution:__

**1).**I. 5x

^{2}– 18x + 9 = 0

5x

^{2}– 15x – 3x + 9 = 05x (x -3) – 3(x – 3) = 0

(x – 3) (5x – 3) = 0

x = 3 or 3/5

II. 20y

^{2}– 13y + 2 = 020y

^{2}– 8y – 5y + 2 = 04y(5y – 2) -1(5y – 2) = 0

(4y – 1) (5y – 2) = 0

y = 1/4 or 2/5

Clearly x> y

**Answer: a)**

**2).**I. x

^{3}– 878 = 453

x =

_{3}√1331 = 11àx = 11II. y

^{2}– 82 = 39y

^{2}= 82 + 39 = 121y = ±11

x ≥ y

**Answer: b)**

**3).**I. 3/√x + 4/√x = √x

3 +4 = x

x = 7

II. y

^{3}– (7)^{7/2}/√y = 0y

^{3+1/2}– (7)^{7/2}= 0y

^{7/2}= 7^{7/2}ày = 7Clearly, x = y

**Answer: e)**

**4).**I. 9x – 15.45 = 54.55 + 4x

9x – 4x = 70

5x = 70à x = 14

II. √(y + 155) – √36 = √49

√(y + 155) = 6 + 7à√(y + 155) = 13

y + 155 = 169

y = 169 – 155 = 14

Clearly, x = y

**Answer: e)**

**5).**I. x

^{2}+ 11x + 30 = 0

x

^{2}+ 6x + 5x + 30 = 0x(x +6) + 5(x + 6) = 0

(x + 5) (x + 6) = 0

x = -5 (or) -6

x = -5 (or) -6

II. y

^{2}+ 7y + 12 = 0y

^{2}+ 4y + 3y + 12 = 0y(y+4) + 3(y+4) = 0

(y+3) (y+4) = 0

y = -3 (or) -4

x

x

**Answer: c)**

**6).**I. x

^{2}– 19x + 84 = 0

x

^{2}– 12x – 7x + 84 = 0x(x – 12) -7(x – 12) = 0

x = 7 (or) 12

II. y

^{2}– 25y + 156 = 0y

^{2}– 12y – 13y + 156 = 0y(y – 12) – 13(y – 12) = 0

(y – 12) (y – 13) = 0

Y = 12 (or) 13

Clearly, x ≤ y

**Answer: d)**

**7).**I. x

^{3}– 468 = 1729

x

^{3}= 1729 + 468 = 2197x =

_{3}√2197 = 13II. y

^{2}– 1733 + 1564 = 0y

^{2}– 169 = 0y = ±13

x ≥ y

**Answer: b)**

**8).**I. 9/√x + 19/√x = √x

(9 + 19) / √x = √x

28 = √x ×√xàx = 28

II. y

^{5}– (2 × 14)^{11/2}/√y = 0[y

^{5}√y – (28)^{11/2}] / √y = 0ày^{11/2}– (28)^{11/2}= 0y = 28

Clearly, x = y

**Answer: e)**

**9).**I. √(784)x + 1234 = 1486

√(784)x = 1486 – 1234à√(784)x = 252

x = 252 / 28àx = 9

II. √(1089)y + 2081 = 2345

√(1089)y = 2345 – 2081à√(1089)y = 264

y = 264 / 33ày = 8

x> y

**Answer: a)**

**10).**I. 12/√x – 23/√x = 5√x

(12 – 23) / √x = 5xà -11

x = -11/5

II. √y/12 – 5√y/12 = 1/√y

(√y-5√y) / 12 = 1/√yà-4√y ×√y = 12

-4y = 12à y = -3

Clearly, x>y

**Answer: a)**