Aptitude Questions (Inequality) for AAO and Upcoming Exams

Aptitude Questions (Inequality) for AAO and Upcoming Exams
Aptitude Questions (Inequality) for AAO and Upcoming Exams 2016 Set-69:
Dear Readers, Important Practice Aptitude Questions for Upcoming AAO Exams was given here with Solutions. Aspirants those who are preparing for the examination can use this.

Directions (1-5):  In each question two equations numbered I and II are given. You have  to solve both the equations and mark answer
a)   If x< y           
b)   If x> y
c)   If x ≥ y            
d)   if x ≤ y
e)   if x = y or relation between x and y cannot be established.
1). I. 6x2 + 5x + 1 = 0       
     II. 15y2 + 8y + 1 =0

2). I. x2 + 5x + 6 = 0
     II. 4y2 + 24 y +35 = 0

3). I . 2x2 + 5x + 3 = 0
    II. y2 + 9y + 14 =0

4). I. 88x2 – 19x +1 = 0
    II. 132y2 – 23y +1 = 0

5)I. 6x2 – 7x + 2 = 0
    II. 20y– 31y +12 = 0

Directions (6 -10):  In the following questions, two equations I and II have been given. You have to solve both equations and
Given answer if
a)    x> y
b)    x ≥ y
c)    x< y
d)     x ≤ y
e)    X = y or the relation cannot be established.
6). I. 6x2 + 23x + 20 = 0
     II. 6y2 + 31y +35 = 0

7). I. x2 =81
    II. y2 – 18y + 81 = 0

8). I. 4x2 + 20x + 21 =0
   II. 2y+17y + 35 =0

9). I. x2 -14x + 48 = 0
    II. y2 + 6 = 5y

10). I. 38x2 – 3x – 11 =0
      II. 28y2 + 32y+9 =0
Answers:                          
1). a)  2). e)  3). b)  4). c)  5). a)  6). c)  7). d)  8). b)  9). a)  10). b)

Solutions:
1). I.  6x2 + 5x + 1 = 0  
    à6x2 + 3x + 2x + 1 = 0   
    à3x (2x + 1) + 1 (2x + 1) = 0
    à(3x + 1)(2x + 1) =0
    à x = -1/3  or – 1 /2
  II. 15y2 + 8y + 1 =0
   à15y2 + 5y +3y +1 =0
  à 5y(3y + 1) + 1(3y +1) =0
  à(5y +1)(3y + 1) =0
  ày= -1/5  or -1/3
Answer: (a)

2). I. x2 + 5x + 6 = 0
à x+3x + 2x +6 =0
àx(x+3) + 2(x+3) = 0
à(x+2)(x+3)=0
àx= -2 or -3
II.  4y2 + 24 y +35 = 0
à4y2 + 14y + 10y + 35 = 0
à2y(2y + 7) + 5(2y + 7) =0
à(2y + 7)(2y +5) =0
ày = -7/2  or  -5/2 = – 3.5 or – 2.5
Answer: (e)

3). I. 2x2 + 5x + 3 = 0
    à2x2 + 2x + 3x +3 = 0
   à2x(x+1) + 3(x+ 1) = 0
  à(x +1) (2x+3)=0
  àx = -1 or – 3/2
    II. y2 + 9y + 14 =0
à y2 + 2y + 7y +14 = 0
ày (y+2) + 7(y +2) =0
à(y +7)(y+2) =0
ày = -2 or – 7
Answer: (b)

4). I. 88x2 – 19x +1 = 0  
à 88x2 –11x – 8x + 1=0
à11x(8x – 1) -1(8x -1) =0
à(11x – 1)(8x -1) =0
à x=1/11 or 1 /8
II. 132y2 – 23y +1 = 0    
à 132y2 –12y – 11y + 1=0
à12y (11y – 1) – 1 (11y – 1) =0
à(12y – 1)(11y – 1) =0
ày = 1/12 or 1 /11
Answer: (c)

5). I. 6x2 – 7x + 2 = 0
à 6x2 – 4x-3x +2 =0
à2x (3x -2) -1 (3x – 2) =0
à (2x – 1)(3x -2)=0
àx = 1/2    or    2/3
II. 20y– 31y +12 = 0
à20y2  – 15y – 16y + 12 = 0
à5y (4y – 3) -4 (4y – 3) =0
à (4y -3)(5y -4)=0
ày =3/4 or 4/5
Answer: (a)

6). I. 6x2 + 23x + 20 = 0
à 6x2 + 15x+ 8x+ 20 = 0
à3x (2x + 5) + 4(2x +5) =0
à(2x +5)(3x+4)=0
àx= -5/2  or   -4/3
II. 6y2 + 31y +35 = 0      
à 6y2 + 10y+ 21y +35 = 0
à2y (3y +5) + 7(3y +5)=0
à(2y+7)(3y+5)=0
ày = -7/2 or -5/3
Answer: (c)

7). I. x2 =81
àx =√81 = ±9
II. y2 – 18y + 81 = 0
à(y – 9) = 0 à(y – 9) = 0
ày=9
Answer: (d)

8). I. 4x2 + 20x + 21 =0
à4x2   +14x + 6x +21 =0
à2x(2x +7) + 3(2x +7) =0
à(2x+7)(2x+3)=0
àx=-7/2  or  -3/2
II. 2y+17y + 35 =0
à2y+10y+7y+35 =0
à2y(y+5) + 7(y +5)=0
à(2y+7) (y+5)=0
ày= -5 or -7/2
Answer: (b)

9). I. x2 -14x + 48 = 0
à x2 -8x – 6x+ 48 = 0
àx(x-8) – 6(x-8) =0
à(x-6)(x-8)=0
àx=6  or 8
    II. y2 + 6 = 5y
à y2  – 5y + 6 =0
ày2 -3y – 2y+ 6 =0
ày(y -3)-2(y-3)=0
à(y-3)(y-2)=0
ày= 3  or 2
Answer: (a)

10). I. 38x2 – 3x – 11 =0
à38x2 – 22x + 19x – 11 =0
à2x(19x -11) +1(19x -11)=0
à(2x+1)(19x-11)=0
àx = -1/2 or 11/9
      II. 28y2 + 32y+9 =0
à28y2 + 14y+ 18y+9 =0
à14y(2y +1)+9(2y+1) =0
à(14y+9)(2y+1)=0
ày =- 9/14  or -1/2
Answer: (b)
For More Aptitude Practice Questions- Click Here

/ 5. Reviews

IBPSGuide Recommends Affairs Cloud Current affairs PDF

Free Online Mock Tests