# Aptitude Questions (Quadratic Equations) for IBPS Clerk Mains

Aptitude Questions (Quadratic Equations) for IBPS Clerk Mains:
Dear Readers, Important Practice Aptitude Questions for Upcoming IBPS Clerk V Mains Exam was given here with Explanations. Aspirants those who are preparing for the examination can use this.

Are You preparing for IBPS PO 2019? Start your preparation with Free IBPS PO Mock Test 2019 – Take Test Now
Directions (Q.1- 5): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a)   If x< y
b)   If x โค y
c)   If x = y, or no relation can be established between x and y.
d)   If x> y
e)   If x โฅ y
1). I.9x2 = 1                    II.4y2 + 11y โ 3 =0

2). I.3x 2 + 5x โ 2 =0       II.2y2 โ 7y + 5 =0

3).I.6x 2 + 13x + 5 =0    II.3y2+ 11y + 10 =0

4).I.7x โ 4Y =29            II.5x + 3y โ 50 =0

5).I.x2 โ 5 =0               II.4y2 โ 24y + 35 =0

Directions (Q.6- 10): In each of these questions, two equations are provided. On the basis of these you have to find out the relation between p and q. Give answer

a)   If p = q, or no relation can be established between p and q.
b)   If p> q
c)   If q> p
d)   If p โฅ q
e)   If q โฅ p

6).I. 3p + 2q = 19              II.p + q = 8

7).I.10q2 + 19q + 9 =0     II. 13p2 โ 2p โ 11 = 0

8).I. 2p2 + 3p โ 5 =0         II.2q2 + 11q + 15 =0

9).I.2401p2 = p-2             II.7(p + q) = 2

10). I.p2 -3p + 2 =0        II. q2 โ 7q +10 = 0

Solutions:
1). I. 9x2 = 1
:. x2 = 1/9
:. x = ยฑ 1/3
II.4y2 +11y โ 3 =0
Or, 4y2 + 12y โ y โ 3= 0
Or, 4y(y + 3) โ 1 (y + 3) = 0
:.y = 1/ 4, – 3
Hence, there is no relation between x and y.

2). I. 3x2 + 5x โ 2 =0
Or, 3x2 + 6x โ x -2= 0
Or, 3x(x + 2) โ 1(x + 2) =0
Or, (3x -1) (x +2) = 0
:. X = -2, 1/3
II. 2y2 โ 7y + 5 =0
2y2 โ 2y โ 5y + 5 = 0
Or, 2y(y – 1) โ 5 (y – 1) =0
:. y = 1, 5/2
Hence, x< y

3). I. 6x2 + 13x +5 =0
Or, 6x2 + 3x +10x + 5=0
Or, 3x (2x +1)+ 5(2x + 1)= 0
Or, (3x + 5) (2x +1 ) = 0
:. X = – 5/3, -1/2
II.3y2+11y+10 = 0
Or, 3y+ 6y + 5y+10 = 0
Or, 3y(y + 2) + 5(y + 2) = 0
Or, (3y + 5) (y + 2) = 0
:. y= – 5/3, -2
Hence, x โฅ y

4). I. 7x โ 4y = 29
II. 5x + 3y = 50
(I)ร3 + (II)ร4
21x – 12y = 87
20x + 12y = 200
41x         = 287
:. x = 7
Putting the value of x in (I), we get
y = 5
Hence, x> y

5). I. x2 = 5
:. x = +=โ5 โ ยฑ 2 .236
II.4y2 โ 24y + 35 =0
Or, 4y2 โ 14y โ 10y + 35 = 0
Or, 2y (2y – 7) โ 5(2y – 7)= 0
Or,(2y – 5) (2y – 7) = 0
:. y = 5/2, 7/2 = 2.5, 3.5
Hence, x< y

6). II. p + q = 8
Or, p = 8 โ q โฆโฆ(i)
I. 3p + 2q = 19
Or, 3(8 – q) + 2q =19
Or, q = 5
:.p =8 -5 = 3
Hence, q> p
7). I.10q2 + 19 q + 9= 0
Or, 10q2 + 10q + 9q + 9= 0
Or, 10q (q + 1) + 9(q + 1) =0
Or, (q + 1)(10q + 9) =0
Or, q = -9/10, – 1
II. 13p2 โ 2p โ 11 =0
Or, 13p2 – 13p + 11p โ 11 = 0
Or, 13p (p – 1) + 11(p – 1) = 0
Or,(13p + 11) (p – 1) =0
Or, p = – 11/13, 1
Hence, p> q

8). I. 2p2 + 3p โ 5 =0
Or, p = 1, – 5/2
II. 2q2 + 11q + 15 = 0
Or, 2q2 + 6q + 5q+ 15 = 0
Or, 2q(q + 3)+ 5(q + 3) = 0
Or,(q + 3) (2q + 5) = 0
Or, q = -3, – 5/2
Hence, p โฅ q.

9). I. 2401 p2= p-2
Or, p4 = 1/ 2401
Or, p4 = (1 / 7)4 or, p= 1/ 7
II. 7p + 7q = 2
Or, 7q + 1 =2
Or, 7q =1
Or, q = 1/ 7
Hence, p = q

10).  I. p2 โ 3p + 2 =0
Or, (p – 2) (p -1) = 0
Or, p =1,2
II. q2 โ 7q + 10 = 0
Or, (q – 2) (q – 5) =0
Or, q = 2, 5
Hence, q โฅ p.