# IBPS PO Mains 2015 – Practice Aptitude Questions (Quadratic Equations) With Solutions Set-10

IBPS PO Mains 2015 – Practice Aptitude Questions (Quadratic Equations) With Solutions Set-10:

Dear Reader, Practice Aptitude Questions from Quadratic Equations was given here with explanation, candidates those who need practice in this topic can use it.

ย ย ย ย ย  Directions (1-5): In each question, two equations I and II are given. You have to solve both the equations and give answer

1). I.13x2=xร247รx-1
ย ย ย ย  II.y1/3ร14=294รทy2/3

2).I.8x2-78x+169 =0
ย ย ย ย  II.20y2-117y+169 =0

3).I.(169)1/2x+โ289=134
ย ย ย ย  II.(361)1/2y2-270=1269

4).I.x2-14x +49=0
ย ย ย  II.y2-10y-56=0

5). I.8x2+29x-12=0
ย ย ย ย  II.3y2+12y+9=0

Directions (6-10):In each question, two equations I and II are given. You have to solve both the equations and give answer
6).I.x2-6โ3x-48=0
ย ย ย  II.y2-โ2y-24=0

7).I.x2-11x+24=0
ย ย ย  II.y2-7y+12=0

8).I.12x2-17x+6=0
ย ย ย  II.20y2-31y+12=0

9).I.3x2-8x+4=0
ย ย ย  II.4y2-15y+9 =0

10).I.3โ(x11)-(2401/[3โx]) =0
ย ย ย ย ย  II.โy7-(1296/โy)=0

Answers:ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย

1). c) 2). a) 3). a) 4). e) 5). e) 6). e) 7). e) 8). d) 9). e) 10). e)

Solutions for the above Aptitude Questions:
ย
1).
ย I.13x2= x ร 247 ร 1/x
ย ย ย ย ย  Or, 13x2=247
ย ย ย ย ย  Or, x2=19
ย ย ย ย ย โดx=ยฑ4.35
ย ย  II.y1/3ร14= 294 / y2/3
ย ย ย ย ย ย Or, y(1/3+2/3)=294/14
ย ย ย  Or, y=21
ย ย  Hence x (less than) y
2).
I.8x2-78x+169=0
ย ย  Or, 8x2-52x-26x+169 =0
ย ย  Or, 4x(2x-13)-13(2x-13)=0
ย ย โดx=13/2, 13/4
ย ย ย ย ย ย ย  =6.4, 3.25
ย  II.20y2-117y+169 =0
ย ย ย  Or, 20y2-65y-52y+169 =0
ย ย  Or, 5y(4y-13)-13(4y-13)=0
ย ย  Or, y=13/5,13/4
ย ย โดy=2.6, 3.25
ย ย โดHence xโฅy
3).
ย I. (169)1/2x+โ289=134
ย ย ย  Or, 13x+17=134
ย  Or, 13x=117
ย โดx=9
II. (361)1/2y2-270=1269
ย ย  Or, 19y2=1269+270
ย  Or, y2=81
ย โดy=ยฑ9
Hence, xโฅy
4).
ย I. x2-14x+49=0
ย ย  Or, x2-7x-7x+49=0
ย  Or,(x-7)(x-7)=0
โดx=7
ย II.y2-10y-56=0
ย  Or, y2-14y+4y-56=0
ย Or,y(y-14)+4(y-14)=0
โดy=14,-4
Relation canโt be established.
5).
I. 8x2+29x-12=0
ย ย  Or, 8x2+32x -3x-12=0
ย  Or,8x(x+4)-3(x+4)=0
ย โดx=3/8,-4
II. 3y2+12y+9=0
ย ย ย  Or, 3y2+3y+9y+9=0
ย ย  Or, 3y(y+1)+9(y+1)=0
ย  Or, y=-9/3,-1
ย = -3,-1
Relationship canโt be established.
6).
I. x2-6โ3x-48=0
ย ย ย  Or, x2-8โ3x +2โ3x-48=0
ย ย  Or,x(x-8โ3)+2โ3(x-8โ3)=0
ย ย  Or,(x+2โ3) (x-8โ3)=0
ย โดx=-2โ3,8โ3
ย ย ย  II.y2โ2y-24=0
ย ย  Or, y2– 4โ2y +3โ2y-24=0
ย  Or,y(y-4โ2)+3โ2(y-4โ2)=0
Or,(y+3โ2)(y-4โ2)=0
โดy=-3โ2,4โ2
Hence relation canโt be established.
7).
ย I. x2-11x+24=0
ย ย  Or, x2-8x-3x+24=0
ย  Or,x(x-8)-3(x-8)=0
ย  Or,(x-3)(x-8)=0
ย โดx=3,8
II. y2-7y+12=0
ย  Or, y2-4y-3y+12=0
ย  Or, y(y-4)-3(y-4)=0
ย  Or, (y-3)(y-4)=0
โดy=4,3
Hence, relationship canโt be determined.
8).
ย I.12x2-17x+6=0
ย ย  12x2-9x -8x+6=0
ย  Or, 3x(4x-3)-2(4x-3)=0
ย Or, (3x-2)(4x-3)=0
โดx=2/3, 3/4
II. 20y2-31y+12=0
ย  Or, 20y2-15y -16y+12=0
ย Or, 5y(4y-3)-4(4y-3)=0
ย Or, (5y-4)(4y-3)=0
Y=4/5, 3/4
Hence, xโคy
9).
I. 3x2-8x+4=0
ย ย ย  Or, 3x2-6x -2x+4=0
ย ย  Or, 3x(x-2)-2(x-2)=0
ย  Or, (3x-2)(x-2)=0
ย โดx=2/3, 2
ย ย ย  II. 4y2-15y+9 =0
ย ย  Or, 4y2-12y -3y+9 =0
ย  Or, 4y(y-3)-3(y-3)=0
ย Or, (4y-3)(y-3)=0
โดy=3/4, 3
Hence relation between x and y canโt be established.
10).
ย I.3โx11– 2401 /3โx =0
ย ย ย ย ย  Or, x(11/3+1/3)=2401
ย ย ย ย  Or, x4=2401=(ยฑ7)4
ย ย ย โดx=ยฑ7
II.โy7– 1296 /โy=0
ย  Or, y7/2+1/2=1296
ย  Or, y4=(ยฑ6)4
โดy=ยฑ6
Hence no relationship can be established.