# Reasoning Questions (Inequality) for LIC AAO/IBPS SO Exams

Reasoning Questions (Inequality) for LIC AAO/IBPS SO Exams Set-35:
Dear Readers, Important Practice Reasoning Questions for Upcoming AAO/SO Exams was given here with Explanations. Aspirants those who are preparing for the examination can use this.

Directions (Q.1-5): In each of these questions two equations are given. You have to solve these equations and given answer.

1).I.7P + 3Q = 30                          II.6P – 2Q = 12
a)   If P> Q
b)   If P< Q
c)   If P = Q
d)   If P> Q
e)   If P โค Q or relationship canโt be established

2).I.P2+ 2P โ 8 = 0                                   II.Q2– 5Q + 6 = 0
a)   If P> Q
b)   If P< Q
c)   If P= Q
d)   If P> Q
e)   If P โค Q or relationship canโt be established

3). I.21P2– 17P + 2 = 0                 II.56Q2– 15Q + 1 = 0
a)   If P> Q
b)   If P< Q
c)   If P = Q
d)   If P> Q
e)   If P โค Q or relationship canโt be established

4).I.2P2– 11P + 15 = 0                 II.2Q2+ 3Q โ 9 = 0
a)   If P> Q
b)   If P< Q
c)   If P = Q
d)   If P> Q
e)   If P โค Q or relationship canโt be established

5).I.2P2– 15P + 28 = 0                 II.Q2= 9
a)   If P> Q
b)   If P< Q
c)   If P = Q
d)   If P> Q
e)   If P โค Q or relationship canโt be established

Directions (Q.6-10): For the two given equations I and II give answer

6).I.3p + 4q = 5                             II.p + q = 2
a)   If p is greater than q
b)   If p is smaller than q
c)   If p is equal to q
d)   If p is either equal to or greater than q
e)   If p is either equal to or smaller than q

7).I.2q2– 3q + 1 = 0                       II.2p2– 5p + 3 = 0
a)   If p is greater than q
b)   If p is smaller than q
c)   If p is equal to q
d)   If p is either equal to or greater than q
e)   If p is either equal to or smaller than q

8).I.4p2– 5p + 1 = 0                       II.80q2– 18q + 1 = 0
a)   If p is greater than q
b)   If p is smaller than q
c)   If p is equal to q
d)   If p is either equal to or greater than q
e)   If p is either equal to or smaller than

9).I.4p + 8q = 3                             II.12p +16q = 7
a)   If p is greater than q
b)   If p is smaller than q
c)   If p is equal to q
d)   If p is either equal to or greater than q
e)   If p is either equal to or smaller than q

10).I.q2– 9q + 14 = 0                    II.p2– 23p + 112 = 0
a)   If p is greater than q
b)   If p is smaller than q
c)   If p is equal to q
d)   If p is either equal to or greater than q
e)   If p is either equal to or smaller than q

1). c)   2). e)   3). d)   4). a)   5). a)   6). a)   7). d)   8). a)   9). c)   10). d)

Solution:

2. I.P2+ 2P โ 8 = 0
=P2+ 4P – 2P โ 8 = 0
=(P + 4) ( P – 2) = 0
P = 2, -4
II.Q2– 5Q + 6 = 0
=(Q – 3) (Q – 2) = 0
Q = 2, -3
Hence, relationship canโt be established.

3. I.21P2– 17P + 2 = 0
=>21P2– 14P – 3P + 2 =0
=> (7P – 1) (3P – 2) = 0
P = (1/7), (2/3)
II.56Q2– 15Q + 1 = 0
=>(7Q – 1) (8Q – 1) = 0
Q = (1/7), (1/8)

4. P = (5/2), 3;
Q = (3/2), -3

5.P = 4, (7/2);
Q = ยฑ 3

6. I.3p + 4q = 5
or, 6 – 6q + 4q = 5
or, 2q =1 or, q = (1/2)
II.p + 2q = 2
Or, 3p + 6q = 6
Or, 3p = 6 – 6q
Also, 3p = 6 – 6q = 6 โ 6 ร (1/2) = 6 โ 3 = 3
Or, 3p = 3
Or, p = 1
Hence, p> q

7. I.2q2– 3q + 1 = 0
Or, q =1, (1/2)
II.2P2– 3q + 1 = 0
Or, p = 1, (3/2)
Hence,  p โฅ q.

8. I.4p2– 5p + 1 = 0
Or, p = 1, (1/4)
II.80q2– 18q + 1 = 0
Or, 80q2– 10q – 8q + 1 = 0
Or, (8q – 1) (10q – 1) = 0
Or, q = (1/8), (1/10)
Hence, p> q

9. I.4p + 8q = 3
Or, 12p + 24q = 9
Or, 12p = 9 – 24q
II.12p +16q = 7
Or, 9 – 24q + 16q = 7
Or, 8q = 2
Or, q = (2/8) = (1/4)
Also, 12p = 9 โ 24 ร (1/4) = 9 โ 6 = 3
Or, p = (1/4)
Hence, p = q

10. I.q2– 9q + 14 = 0
Or, q2– 7q – 2q + 14 = 0
Or, (q – 7) (q – 2) = 0
Or, q = 2 or, 7
II.p2– 23p + 112 = 0
Or, p2– 16p – 7p + 112 = 0
Or, (p – 16) (p – 7) =0
Or, p = 7 or, 16
Hence,  p โฅ q.