# Important Shortcuts and Mind Tricks to Solve Simplification Questions in Aptitude Section – Download in PDF

Dear Readers,we have given the Important Aptitude Shortcuts and Mind Tricks to Solve Simplification Questions in Aptitude Section. Candidates those who are preparing for the examination can also download this in PDF.
Simplification:

Simplification -large, complex numerical expression into a simpler form by performing various mathematical operations, in accordance with the BODMAS rule.
B   à Stands for bracket and operation of brackets in the order ( )( ){ } and [ ]
O à Stands for ‘of ‘(usage is x)
D à Stands for division (/)
M à Stands for multiplication (x)
A  à Stands for addition (+)
S  à Stands for subtraction (-)
For Important Fast Math Tricks-Click Below:

Easiest way to choose simplification questions:

STEP 1: Know about BODMAS Rule. Following are the list of priority given for brackets and signs.
STEP 2: If an expression Contains brackets, the expression within the brackets should be simplified first.
STEP 3: If an expression contains ‘Of’, multiplication, division, addition and subtraction, then of should be performed first then followed by multiplication or division.
Proceeding from left to right, addition and subtraction are carried out in the order in which the sign of addition and subtraction are given.
If expression contains ‘Of’ and Division – always do ‘Of’ and then do division
STEP 4: If expression involves all the four operationsthen multiplication and division is carried out first in the order in which they are given from left to right. The same rules are carried out for addition and subtraction
Learn squares and cubes of number:
Squares (1 to 302):
·         1– 1
·         2– 4
·         3– 9
·         4– 16
·         52  – 25
·         62 – 36
·         7– 49
·         82 – 64
·         9– 81
·         10-100
·         11 121
·         12-144
·         132 – 169
·         14– 196
·         152 – 225
·         16– 256
·         172 – 289
·         18– 324
·         192 – 361
·         202 – 400
·         212 – 441
·         22– 484
·         232 – 529
·         24– 576
·         252 – 625
·         262 – 676
·         272 – 729
·         282 – 784
·         292 – 841
·         302 – 900
·         13 – 1
·         23– 8
·         33 – 27
·         43 – 64
·         53 – 125
·         63 – 216
·         73 – 343
·         83 – 512
·         93 – 729
·         103 – 1000
·         113 – 1331
·         123 – 1728
·         133 – 2197
·         143 – 2477
·         153 – 3375
Solution: From the above question if we know the square value of 212, then this question will be easily solved
STEP 1: 21= 441
STEP 2: 441/49= 9
STEP 3: 9×6 = 54
STEP 4: Hence the answer for above series is 54

2) REMEMBER FREQUENTLY ASKED FRACTION VALUES
·         5% = 0.05
·         6 ¼ % = 0.0625
·         10% = 0.1
·         12 ½ = 0.125
·         16 × (2/3)% = 0.166
·         20 % = 0.2
·         25 % = 0.25
·         33 × (1/3)%= 0.33
·         40 % = 0.4
·         50% = 0.5
·         60% = 0.6
·         66 × (2/3) =0.66
·         75 %= 0.75
·         80 %= 0.8
·         90 % = 0.9
·         100% = 1
·         125 % = 1.25
·         150% = 1.5
·         200 % = 2
·         250 % =2.5
EXAMPLE 2: 60% of 250 +25% of 600
STEP 1: Know the values of 60% =0.6 and 25 % = 0.25
STEP 2: Now directly multiply 0.6×250 + 0.25×600
STEP 3: 0.6×250= 150
0.25×600=150
STEP 4: 150+ 150 = 300
STEP 5: Hence the answer for above series is 300

3) Solve mixed fraction – Multiplication
EXAMPLE 3: 2×(3/5) × 8×(1/3) + 7 ½ × 2×(2/3)
STEP 1: 2×(3/5) × 8×(1/3) = (13/5) × (25/3) = 65/3
STEP 2:  + 7 ½ ×2×(2/3)= 43/6 × 12/5 = 86/5
STEP 3: 65/3 + 86/5 = 38×(15/13)
STEP 4: hence the answer for above series is 38×(15/13)

Example 4: 19×(3/5) + 23×(2/3) – 24×(1/5)
STEP 1: Take all the whole number outside the bracket i.e. 19+23 -24 = 18
STEP 2: Add fractions within bracket 18×[(3/5) + (2/3) – (1/5)] = 18(16/15)
STEP 3:  Hence the answer for above series is 18(16/15)

Example 5: (?)+18×12= 6×5×2
STEP 1: Multiply 18 × 12 = 216
STEP 2: Square of 6 = 36
STEP 3: Multiply 36 ×5×2= 360
STEP 4: (X)+216 = 360
STEP 5: (X)2  = 360-216 = 144
STEP 6: Therefore X = 12 