# RRB ALP 2018 Practice Test Papers | Arithmetic Questions (Day-52)

Dear Aspirants, Here we have given the Important RRB ALP & Technicians Exam 2018 Practice Test Papers. Candidates those who are preparing for RRB ALP 2018 can practice these Arithmetic Questions to get more confidence to Crack RRB 2018 Examination.

[WpProQuiz 2694]

Click “Start Quiz” to attend these Questions and view Explanation

1. Find the value of x

250% of 150 + 35% of 500 – 350 = x 450

1. 100
2. 150
3. 200
4. 250
1. If the numerator increases by 250% and the denominator decrease by 50% the fraction will be 7/5. What is the original fractional value?
1. 1/5
2. 5/1
3. 7/1
4. 1/7
1. The cost of a table and a chair is Rs. 8000. A seller earns profit by selling a chair is 25 % and a loss of selling a table is 15%. He has neither profit nor loss in the transaction. What is the rate of a Chair?
1. 5000
2. 3000
3. 6000
4. 2000
1. Find the next number in the series

26, 101, 226, 401, 626, ?

1. 900
2. 901
3. 899
4. 910
1. If xy = – 40 and x2+ y2 = 81, then find the value of (x + y).
1. 0
2. 20
3. 1
4. 100
1. The value of tan 1°tan 2° tan 3° …………… tan 89° is
1. 1
2. 0
3. -1
4. 2
1. If the three medians of a triangle are same then the triangle is
1. Isosceles
2. Equilateral
3. Obtuse angle
4. Right – Angle
1. A and B can do a piece of work in 15 days. B and C can do a piece of work in 12 days. C and A can do in 10 days. How many days they all together finish the work?
1. 10
2. 2
3. 5
4. 12
1. The average of five numbers is 30. If one number is excluded, the average becomes 28. What is the excluded value?
1. 25
2. 35
3. 38
4. 28
1. Find the number of prime factors

307×225×3412×125

1. 30
2. 40
3. 60
4. 70

250% of 150 + 35% of 500 – 350 = x – 450

375 + 175 – 350 = x – 450

375 + 175 – 350 + 450 = x

X = 250

Let the original fraction be x/y

(350/50)(x/y)=7/5

x/y= 1/5

X  + y = 8000 ——- (1)

(x/100)*125 + (y/100)*85 = 8000

(25/20)x + (17/20)y= 8000

25x + 17y = 8000*20= 160000  ——- (2)

Solve this equation (1) & (2)

X= 3000

Y= 5000

52+1 =25 + 1 = 26

102+1 = 101

152+1 = 226

202+1 = 401

252+1= 626

302 + 1 = 901

(x+y)2 = x2+y2+2xy

(x+y)2  = 81 +(2.(-40))

= 81 – 80

(x+y)2 =1 = 1

(tan 1°. tan 89°) (tan 2°. tan 88°) ………. tan 45°

(tan 1°. cot 1°)(tan 2° cot 2°) ……….. tan 45°

Tan 45° =1 ∴[tanθ.cotθ = 1]

Every triangle has exactly three medians, one from each vertex, and they all intersect each other at the triangle’s centroid. In the case of isosceles and equilateral triangles, a median bisects any angle at a vertex whose two adjacent sides are equal in length.

A+B = 1/15

B+C = 1/12

C+A = 1/10

2(A+B+C) = 1/15 + 1/12 + 1/10 = 15/60 = 1/4

ABC = 2/4 = 1/2

A ,B and C can finish the work in 2 days

(5×30) – (28×4) = 150 – 112 = 38

307 = (3×5×2)7 = 37×57×27

225= (11×2)5  = (25×115)

3412 = (2×17)12  = (212×1712)

125 = (2×2×4)5  = (25×25×45)

=2 (7+5+12+5+5)× 115×1712×312×57 = 234× 115×1712×312×57

Required number of prime factors 34+5+12+7+12= 70

RRB ALP 2018 – “All in One” Study Materials and Practice Sets 