# RRB Clerk Mains Quantitative Aptitude Questions 2021 (Day-01)

Dear Aspirants, Our IBPS Guide team is providing new series of Quantitative Aptitude Questions for IBPS RRB Clerk Mains 2019 so the aspirants can practice it on a daily basis. These questions are framed by our skilled experts after understanding your needs thoroughly. Aspirants can practice these new series questions daily to familiarize with the exact exam pattern and make your preparation effective.

Start Quiz

Wrong number series

Directions (01-05): Find out the wrong number in the following number series.

1) 13, 22, 60, 236, 1150, 6888

A.22

B.1150

C.236

D.6888

E.60

2) 28, 42, 216, 1785, 21420

A.28

B.21420

C.1785

D.42

E.216

3) 23, 25, 49, 61, 189, 211

A.189

B.25

C.61

D.211

E.49

4) 11, 24, 51, 93, 156, 226

A.93

B.320

C.156

D.226

E.51

5) 115, 66, 130, 49, 169, 28

A.66

B.28

C.130

D.169

E.49

Directions (06-10): Following question contains two equations as I and II. You have to solve both equations and determine the relationship between them and give answer as,

6) I) 2x2 – 44x + 240 = 0

II) 4y2– 48y + 44 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

7) I)
(x + 2)! = 42 * x!

II) y2+ 4y – 32 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

8) I)
18x2 – 117x + 180 = 0

II)6y2– 27y + 30 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

9) I)
32x2 – 48x + 16 = 0

II)2y2– 12y + 16 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

10) I)
x2 + 74x + 1333 = 0

II) y2+ 89y + 1978 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

(13 – 2) * 2 = 22

(22 – 2) * 3 = 60

(60 -2) * 4 = 232

(232 – 2) * 5 = 1150

(1150 – 2) * 6 = 6888

28 * 1.5 = 42

42 * 5 = 210

210 * 8.5 = 1785

1785 * 12 = 21420

23 + 22 – 2 = 25

25 + 33 – 3 = 49

49 + 42 – 4 = 61

61 + 53 – 5 = 181

181 + 62 – 6 = 211

11 + 13 = 24

24 + 13 + 14 = 51

51 + 13 + 14 + 15 = 93

93 + 13 + 14 + 15 + 16 = 151

151 + 13 + 14 + 15 + 16 + 17 = 226

115 – 72 = 66

66 + 82 = 130

130 – 92 = 49

49 + 102 = 149

149 – 112 = 28

2x2 – 44x + 240 = 0

2x2 – 20x – 24x + 240 = 0

2x(x – 10) – 24(x – 10) = 0

(2x – 24)(x – 10) = 0

x = 12, 10

4y2 – 48y + 44 = 0

4y2 – 44y – 4y + 44 = 0

4y(y – 11) – 4(y – 11) = 0

(4y – 4)(y – 11) = 0

y = 1, 11

Relationship between x and y cannot be established.

(x + 2)! = 42 * x!

(x + 2) * (x + 1) * x! = 42 * x!

x2 + x + 2x + 2 = 42

x2 + 3x – 40 = 0

x2 + 8x – 5x – 40 = 0

x(x + 8) – 5(x + 8) = 0

(x – 5)(x + 8) = 0

x = 5, -8

y2 + 4y – 32 = 0

y2 + 8y – 4y – 32 = 0

y(y + 8) – 4(y + 8) = 0

(y – 4)(y + 8) = 0

y = 4, -8

Relationship between x and y cannot be established.

18x2 – 117x + 180 = 0

18x2 – 72x – 45x + 180 = 0

18x(x – 4) – 45(x – 4) = 0

(18x – 45)(x – 4) = 0

x = 2.5, 4

6y2 – 27y + 30 = 0

6y2 – 12y – 15y + 30 = 0

6y(y – 2) – 15(y – 2) = 0

(6y – 15)(y – 2) = 0

y = 2, 2.5

x ≥ y

32x2 – 48x + 16 = 0

32x2 – 32x – 16x + 16 = 0

32x(x – 1) – 16(x – 1) = 0

(32x – 16)(x – 1) = 0

x = 1, 0.5

2y2 – 12y + 16 = 0

2y2 – 8y – 4y + 16 = 0

2y(y – 4) – 4(y – 4) = 0

(2y – 4)(y – 4) = 0

y = 2, 4

x < y

x2 + 74x + 1333 = 0

x2 + 43x + 31x + 1333 = 0

x(x + 43) + 31(x + 43) = 0

(x + 31)(x + 43) = 0

x = -31, -43

y2 + 89y + 1978 = 0

y2 + 43y + 46y + 1978 = 0

y(y + 43) + 46(y + 43) = 0

(y + 46)(y + 43) = 0

y = -46, -43

x ≥ y 